matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbiturvorbereitungnach x auflösen...
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Abiturvorbereitung" - nach x auflösen...
nach x auflösen... < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

nach x auflösen...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:07 So 07.01.2007
Autor: Tin-Chen

Ich sitze vor folgendem Problem:

[mm] \bruch{1}{t} x^4 [/mm] - [mm] x^4 [/mm] + 0,25t = 0

Nun, ich muss dies nun nach x auflösen, und weiß nicht so recht wie. Ich komm net weiter, bitte um hilfe,
Danke schonmal
Tina

        
Bezug
nach x auflösen...: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 So 07.01.2007
Autor: Teufel

Hi!

Du kannst das [mm] x^4 [/mm] bei den beiden Summanden ausklammern, in denen es vorkommt. Schaffst du den rest alleine? :)

Bezug
                
Bezug
nach x auflösen...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:22 So 07.01.2007
Autor: Tin-Chen

ja, das mit dem ausklammern habe ich auch schon versucht, da bekomme ich dann raus:

          [mm] (\bruch{1}{t}-1) x^4 [/mm] = -0,25t
[mm] \gdw x^4 [/mm] = - [mm] \bruch {0,25t}{\bruch{1}{t}-1} [/mm]
und dann wird mir das ganze zu kompliziert... was mach ich denn dann damit?

Bezug
                        
Bezug
nach x auflösen...: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 So 07.01.2007
Autor: hase-hh

moin,

> ja, das mit dem ausklammern habe ich auch schon versucht,
> da bekomme ich dann raus:
>  
> [mm](\bruch{1}{t}-1) x^4[/mm] = -0,25t
>  [mm]\gdw x^4[/mm] = - [mm]\bruch {0,25t}{\bruch{1}{t}-1}[/mm]
>  und dann
> wird mir das ganze zu kompliziert... was mach ich denn dann
> damit?


[mm] x^4 [/mm] = - [mm] \bruch{0,25 t}{1} [/mm] : ( [mm] \bruch{1}{t} [/mm] - 1)


zusammenfassen:  

[mm] \bruch{1}{t} [/mm] - 1 = [mm] \bruch{1}{t} [/mm] - [mm] \bruch{t}{t} [/mm]

= [mm] \bruch{1-t}{t} [/mm]


zwei brüche werden durch einander geteilt, indem man den ersten bruch mit dem kehrwert des zweiten malnimmt, also:

[mm] x^4 [/mm] = - [mm] \bruch{0,25 t}{1} [/mm] :  [mm] \bruch{1-t}{t} [/mm]

[mm] x^4 [/mm] = = - [mm] \bruch{0,25 t}{1} [/mm] * [mm] \bruch{t}{1-t} [/mm]


[mm] x^4 [/mm] = - [mm] \bruch{0,25 t^2}{1-t} [/mm]

jetzt aus dem nenner minus 1 ausklammern...


[mm] x^4 [/mm] = - [mm] \bruch{0,25 t^2}{(-1)*(-1+t)} [/mm]


[mm] x^4 [/mm] = [mm] \bruch{0,25 t^2}{t-1} [/mm]

und dann wurzel ziehen...


gruß
wolfgang





Bezug
                                
Bezug
nach x auflösen...: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:43 So 07.01.2007
Autor: Tin-Chen

Vielen Dank,
Liebe Grüße,
Tina

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]