matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenKombinatorikn maliges Würfeln
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Kombinatorik" - n maliges Würfeln
n maliges Würfeln < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n maliges Würfeln: Anzahl der Tupel
Status: (Frage) beantwortet Status 
Datum: 21:09 Sa 08.11.2008
Autor: tinakru

Aufgabe
Mit einem Würfel wird n mal geworfen. Sei k <= n

Wie groß ist die Wahrscheinlichkeit, dass genau k mal die Zahl  1 geworfen wird?

Hallo,

Das mit der Wahrscheinlichkeit ausrechen is mir eigenlich klar:
Das geht so: |A| / | [mm] \omega [/mm] |

wobei A das Ereignis ist: k mal die Zahl 1.

Mein Problem ist, dass ich nicht rausbekomme wie ich die Mächtigkeit von A berechnen soll.

Ich habs schon mal an nem Beispiel probiert für n = 3:

Für k = 3 wäre die Mächtigkeit von A = 1
für k = 2 wäre sie 15
und für k = 1  wäre sie 75

für k = 0  wäre sie 125

Aber ich kann dann beim besten Willen kein Muster erkennen, sodass ich eine allgemeine Formel aufstellen könnte.

Vielleicht kann mir ja jemand helfen.

Danke schon mal

        
Bezug
n maliges Würfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Sa 08.11.2008
Autor: MathePower

Hallo tinakru,

> Mit einem Würfel wird n mal geworfen. Sei k <= n
>  
> Wie groß ist die Wahrscheinlichkeit, dass genau k mal die
> Zahl  1 geworfen wird?
>  Hallo,
>  
> Das mit der Wahrscheinlichkeit ausrechen is mir eigenlich
> klar:
>  Das geht so: |A| / | [mm]\omega[/mm] |
>  
> wobei A das Ereignis ist: k mal die Zahl 1.
>  
> Mein Problem ist, dass ich nicht rausbekomme wie ich die
> Mächtigkeit von A berechnen soll.
>  
> Ich habs schon mal an nem Beispiel probiert für n = 3:
>  
> Für k = 3 wäre die Mächtigkeit von A = 1
>  für k = 2 wäre sie 15
>  und für k = 1  wäre sie 75
>  
> für k = 0  wäre sie 125
>  
> Aber ich kann dann beim besten Willen kein Muster erkennen,
> sodass ich eine allgemeine Formel aufstellen könnte.
>  
> Vielleicht kann mir ja jemand helfen.


Das ist ein Beispiel für einen []Bernoulli-Prozess.


>  
> Danke schon mal


Gruß
MathePower

Bezug
                
Bezug
n maliges Würfeln: 3 über 2
Status: (Frage) beantwortet Status 
Datum: 21:33 Sa 08.11.2008
Autor: tinakru

Aufgabe
.

Ich hab mir jetzt diese Seite angeschaut. Ich verstehe alles bis auf eine Kleinigkeit nicht. Und zwar. für n = 3 und k = 2
Also 3 mal wüfeln und genau 2 mal die 1.
Das ist laut Wiki {3 [mm] \choose [/mm] 2}

Wenn man das ausrechnet kommt 3 heraus.
Das ist aber nicht die Mächtigkeit von dem Ergeignis genau 2 mal die 1 zu würfeln oder?
Ich zähle mal auf: A = {(1,1,2), (1,1,3),(1,1,4),(1,1,5), (1,3,1),(1,5,1)....}

Wo habe ich da meinen Fehler??

Danke


Bezug
                        
Bezug
n maliges Würfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 21:57 Sa 08.11.2008
Autor: MathePower

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo tinakru,

> .
>  Ich hab mir jetzt diese Seite angeschaut. Ich verstehe
> alles bis auf eine Kleinigkeit nicht. Und zwar. für n = 3
> und k = 2
>  Also 3 mal wüfeln und genau 2 mal die 1.
>  Das ist laut Wiki {3 [mm]\choose[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

2}

>
> Wenn man das ausrechnet kommt 3 heraus.
>  Das ist aber nicht die Mächtigkeit von dem Ergeignis genau
> 2 mal die 1 zu würfeln oder?



[mm]\pmat{3 \\ 2}[/mm] gibt die Anzahl der Möglichkeiten an, aus 3 Elementen 2 auszuwählen.


>  Ich zähle mal auf: A = {(1,1,2), (1,1,3),(1,1,4),(1,1,5),
> (1,3,1),(1,5,1)....}


Die Menge A hat demnach 15 von 216 Elementen.
Demnach beträgt die Wahrscheinlichkeit [mm]\bruch{15}{216}[/mm].

[mm]\bruch{15}{216}=3*\bruch{1}{6}* \bruch{1}{6}*\bruch{5}{6}=\pmat{3 \\ 2}*\left(\bruch{1}{6}\right)^{2}*\bruch{5}{6}[/mm]

Und das ist nicht anderes als die Binomialverteilung.


>  
> Wo habe ich da meinen Fehler??


Du hast keinen Fehler gemacht.

Die Wahrscheinlichkeiten, die Du bekommst, sind äquivalent mit denen von der Binomialverteilung.


>  
> Danke
>  


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]