matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorien! in Primfaktoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - n! in Primfaktoren
n! in Primfaktoren < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n! in Primfaktoren: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:26 Mi 01.11.2006
Autor: Mikke

Hallo, ich habe eine Frage wo ih nicht weiterkomme, und zwar haben wir als Folgerung angegeben, dass wenn [mm] p_{1} t Primzahlen sind und n! für jede natürliche Zahl n! = [mm] (p_{1})^{e_{1}}*(p_{2})^{e_{2}}* [/mm] ... [mm] *(p_{t})^{e_{t}} [/mm] mit [mm] e_{t}>0, [/mm] dann ist [mm] e_{1}>=e_{2}>=...>=e_{t}. [/mm]
Nun habe ich bereits gezeigt, das [mm] e_{t} [/mm] = 1, falls n>=2.
Aber wie kann ich jetzt noch alle Zahlen n>=3 bestimmen mit [mm] e_{t-1}>1 [/mm] .
Bei diesem letzen weiß ich nicht wie ich das machen soll und hoffe ihr könnt mir helfen
MfG Arnbert

        
Bezug
n! in Primfaktoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Mi 01.11.2006
Autor: zahlenspieler

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Arnbert,
irgendwas ist da komisch in der Aufgabenstellung; denn diese Primfaktorzerlegung gilt natürlich nur für $p_t\le n < p_{t+1}$.
Du kannst aber sicher die $e_i, i=1, \ldots, t$ maximal annehmen:
$p_i^e_i\le n! <p_i^e_{i+1$.
Nun betrachte mal diese Ungleichung für zwei aufeinanderfolgende Primzahlen; wahrscheinlich ists am einfachsten zu zeigen, daß $e_k<e_{k+1}$ nicht möglich ist ($1 \le k <t$).
Gruß
zahlenspieler
P.S. Es gibt eine hübsche Formel, mit der man den Exponenten einer gegebenen Primzahl in der PFZ von n! bestimmen kann; aber die sollst Du wohl nicht verwenden :-(?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]