matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik/Hypothesentestsn bestimmen, Normalverteilung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Statistik/Hypothesentests" - n bestimmen, Normalverteilung
n bestimmen, Normalverteilung < Statistik/Hypothesen < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n bestimmen, Normalverteilung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:54 Mo 13.01.2014
Autor: Cash225

Aufgabe
Eine Porzellanmanufaktur bringt eine neue Serie auf den Markt. Durchschnittlich sind 80% der Fertigung 1. Wahl. Der Rest wird mit kleinen Fehlern als 2.Wahl verkauft.

c)
Ein Großkunde möchte 1000 Stücke 1.Wahl geliefert bekommen. Wie viele Teile aus der laufenden Produktion sollten ihm mindestens geliefert werden, damit mit mindestens 98% Wahrscheinlichkeit mindestens 1000 Stücke 1. Wahl darunter sind.


Ich habe ja quasi k = 1000 gegeben und die Wahrscheinlichkeit für 1000 mal 1. Wahl beträgt 0,8. Jetzt muss ich ja das n berechnend, unter der Bedingung, dass n so gewählt ist, dass 98% der gelieferten Ware 1. Wahl sind.

Mein Ansatz sieht also so aus:

[mm]P(X \le 1000 ) < 0,02[/mm] oder:
[mm]F(n; 0,8; 1000 ) < 0,02[/mm]

Mir ist klar das den Wert von 0,02 aus der Tabelle der Gaußchen Summenfunktion ablesen muss, quasi der Wert, der erstmals unter 0,02 liegt. Das ist bei mir folgender Wert

[mm]\Phi(-2,06) = 0,0192 [/mm]

daraus ergibt sich ja folgende Gleichung:

[mm]\bruch{1000 - n \* 0,8}{\wurzel{n\*0,8\*0,2}}\le 0,02[/mm]

Jetzt habe ich aber schon öfters versucht die Formel nach n aufzulösen:

[mm]1000-0,8n \ge -2,06 \* \wurzel{n\*0,8\*0,2}[/mm]

[mm]1000^{2}-0,8n^{2} \ge -2,06 \* n\*0,8\*0,2[/mm]

[mm]1000^{2}-0,8n^{2} \ge -0,3296n[/mm]

[mm]0 \ge 0,8n^{2} -0,3296n -1000^{2}[/mm]

aber ich weiß das das falsch ist weil wenn ich hier die pq Formel einsetze kommt unter der Wurzel ein Minus raus.

Also wo liegt der Fehler?

Mit freundlichen Grüßen

Carsten

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
n bestimmen, Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:52 Mo 13.01.2014
Autor: Al-Chwarizmi


> Eine Porzellanmanufaktur bringt eine neue Serie auf den
> Markt. Durchschnittlich sind 80% der Fertigung 1. Wahl. Der
> Rest wird mit kleinen Fehlern als 2.Wahl verkauft.
>  
> c)
>  Ein Großkunde möchte 1000 Stücke 1.Wahl geliefert
> bekommen. Wie viele Teile aus der laufenden Produktion
> sollten ihm mindestens geliefert werden, damit mit
> mindestens 98% Wahrscheinlichkeit mindestens 1000 Stücke
> 1. Wahl darunter sind.
>  
> Ich habe ja quasi k = 1000 gegeben und die
> Wahrscheinlichkeit für 1000 mal 1. Wahl beträgt 0,8.    [haee]

Sorry, aber schon das ist doch absoluter Käse ...

Heute Abend komme ich nicht mehr dazu, mir das
Ganze näher anzuschauen.

LG ,   Al-Chw.


Bezug
        
Bezug
n bestimmen, Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 08:25 Di 14.01.2014
Autor: luis52

Moin Carsten,

[willkommenmr]


> daraus ergibt sich ja folgende Gleichung:
>  
> [mm]\bruch{1000 - n \* 0,8}{\wurzel{n\*0,8\*0,2}}\le 0,02[/mm]

[notok]

[mm] $\Phi\left(\bruch{1000 - n \* 0,8}{\wurzel{n\*0,8\*0,2}}\right)=\Phi(-2,06)= [/mm] 0,02$.




Bezug
        
Bezug
n bestimmen, Normalverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:59 Di 14.01.2014
Autor: Cash225

Ach ich weiß. Danke Luis. Ich hab die falsche Gleichung aufgestellt. Dass in der Klammer muss -2,06 geben. Also muss ich das gleichsetzen anstatt mit 0,02.  

Also so:

$ [mm] \bruch{1000 - n * 0,8}{\wurzel{n*0,8*0,2}}= [/mm] -2,06 $

Ist dieser Ansatz richtig?
Momentan kann ich es aber gerade nicht ausrechnen. Versuche es später.

Vielen dank

LG

Carsten

Bezug
                
Bezug
n bestimmen, Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Di 14.01.2014
Autor: Al-Chwarizmi


> [mm]\bruch{1000 - n * 0,8}{\wurzel{n*0,8*0,2}}= -2,06[/mm]
>  
> Ist dieser Ansatz richtig?


Hallo Carsten,

dies ist die Gleichung, welche auf den kritischen Wert
für n führt, der (knapp) überschritten werden sollte,
um die gewünschte Bedingung zu erfüllen. Anstelle
des Wertes -2.06 kann ich dir einen etwas genaueren
Wert anbieten:  -2.054 .

LG ,   Al-Chw.


(Und ja: bitte um Entschuldigung für meinen gestrigen
ziemlich unfreundlichen Ton !)  


Bezug
                        
Bezug
n bestimmen, Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:32 Di 14.01.2014
Autor: Cash225


> (Und ja: bitte um Entschuldigung für meinen gestrigen
>  ziemlich unfreundlichen Ton !)  

kein Problem.

Ich bin jetzt auf die Lösung gekommen.
Hatte auch nicht berücksichtigt, dass die [mm]1000^{2}[/mm] negativ werden, wenn ich Sie auf die andere Seite bringe und wiederum in der pq Formel wieder positiv werden. War wohl etwas zu spät gestern :)

Die Lösung ist mindestens 1251 Teile. Das hört sich für mich auch logisch an.

Vielen Dank

LG

Carsten

Bezug
                                
Bezug
n bestimmen, Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 Di 14.01.2014
Autor: Al-Chwarizmi

Hallo Carsten,


> Die Lösung ist mindestens 1251 Teile.     [haee]  [kopfschuettel]

Nur 1251 ?

> Das hört sich für mich auch logisch an.

Für mich aber gar nicht. Damit hätte man bei weitem
nicht die gewünschte Sicherheit, genügend Teile erster
Qualität in der Lieferung zu haben.

Bei meiner Rechnung komme ich auf das Ergebnis:

mindestens 1287 Teile bestellen !

LG ,   Al-Chw.

Bezug
                
Bezug
n bestimmen, Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Di 14.01.2014
Autor: luis52


> Ist dieser Ansatz richtig?
>  Momentan kann ich es aber gerade nicht ausrechnen.


Das sieht viel versprechend aus.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik/Hypothesentests"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]