matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebran-te Wurzel Ungleichung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - n-te Wurzel Ungleichung
n-te Wurzel Ungleichung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n-te Wurzel Ungleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:20 Fr 08.07.2011
Autor: KingStone007

Hallo,
wie kann ich folgende Ungleichung zeigen?

[mm] \wurzel[n]{n}\le1-\bruch{2}{n}+\bruch{2}{\wurzel{n}} [/mm]

Ich habe leider bis jetzt nichts rausbekommen.? Mir fehlt wohl die richtige Idee oder so. -.-

Lg, David

        
Bezug
n-te Wurzel Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:32 Sa 09.07.2011
Autor: DM08

z.z. [mm] \wurzel[n]{n}\le1-\bruch{2}{n}+\bruch{2}{\wurzel{n}}\ \forall\ n\in\IN. [/mm]
Der Beweis erfolgt durch vollständige Induktion über n.

Hier musst du beim Induktionsschritt die Wurzelfunktion gut umformen, sodass du deine Induktionsvorraussetzung benutzen darfst.
Ich empfehle dir eher zuvor die folgende Gleichung zu zeigen [mm] :\limes_{n\rightarrow\infty} \sqrt[n]{n}=1. [/mm]

Damit ist die zu zeigende Gleichung trivial zu zeigen.

MfG

Bezug
                
Bezug
n-te Wurzel Ungleichung: Anmerkung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:50 Sa 09.07.2011
Autor: meili

Hallo,

> z.z. [mm]\wurzel[n]{n}\le1-\bruch{2}{n}+\bruch{2}{\wurzel{n}}\ \forall\ n\in\IN.[/mm]
>  
> Der Beweis erfolgt durch vollständige Induktion über n.
>  
> Hier musst du beim Induktionsschritt die Wurzelfunktion gut
> umformen, sodass du deine Induktionsvorraussetzung benutzen
> darfst.
>  Ich empfehle dir eher zuvor die folgende Gleichung zu
> zeigen : [mm]\sqrt[n]{n}=1\ \forall\ n\in\IN.[/mm]

Du meinst wohl [mm] $\limes_{n\rightarrow\infty} \sqrt[n]{n}=1$, [/mm]
denn [mm]\sqrt[n]{n}=1\ \forall\ n\in\IN.[/mm] ist falsch, da z.B. [mm] $\wurzel{2} \approx [/mm] 1,41$.

>  
> Damit ist die zu zeigende Gleichung trivial zu zeigen.
>  
> MfG

Gruß
meili

Bezug
                        
Bezug
n-te Wurzel Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:00 Sa 09.07.2011
Autor: DM08

Danke, habe mich verschrieben.

Habe es editiert.

MfG

Bezug
                
Bezug
n-te Wurzel Ungleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:28 Sa 09.07.2011
Autor: fred97


> z.z. [mm]\wurzel[n]{n}\le1-\bruch{2}{n}+\bruch{2}{\wurzel{n}}\ \forall\ n\in\IN.[/mm]
>  
> Der Beweis erfolgt durch vollständige Induktion über n.
>  
> Hier musst du beim Induktionsschritt die Wurzelfunktion gut
> umformen, sodass du deine Induktionsvorraussetzung benutzen
> darfst.
>  Ich empfehle dir eher zuvor die folgende Gleichung zu
> zeigen [mm]:\limes_{n\rightarrow\infty} \sqrt[n]{n}=1.[/mm]
>  
> Damit ist die zu zeigende Gleichung trivial zu zeigen.

Ach was ? Dann mach mal vor !

FRED

>  
> MfG


Bezug
        
Bezug
n-te Wurzel Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 10:18 Fr 15.07.2011
Autor: ullim

Hi,

sei [mm] \epsilon_n [/mm] die Folge [mm] \epsilon_n=\bruch{2}{\wurzel{n}}-\bruch{2}{n}. [/mm] Es gilt [mm] \epsilon_n\ge{0} [/mm]


Betrachte den Ausdruck [mm] (1+\epsilon_n)^n. [/mm] Für den Ausdruck gilt die Abschätzung

[mm] (1+\epsilon_n)^n=\summe_{i=0}^{n}\binom{n}{i}\epsilon_n^i\ge1+n*\epsilon_n+\bruch{n(n-1)}{2}\epsilon_n^2 [/mm] wegen [mm] \epsilon_n\ge{0} [/mm] und für [mm] n\ge{2} [/mm]

Weiter gilt

[mm] (1+\epsilon_n)^n-n\ge1+n*\epsilon_n+\bruch{n(n-1)}{2}\epsilon_n^2-n=\bruch{(n-2)(\wurzel{n}-1)^2}{n}\ge{0} [/mm] für [mm] n\ge{2} [/mm]

Also gilt

[mm] 1+\epsilon_n\ge \wurzel[n]{n} [/mm] und damit die gesuchte Ungleichung. Für n=1 kann man die Ungleichung direkt nachrechnen.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]