matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenWahrscheinlichkeitstheorien-maliges Würfeln
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Wahrscheinlichkeitstheorie" - n-maliges Würfeln
n-maliges Würfeln < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

n-maliges Würfeln: Korrektur
Status: (Frage) beantwortet Status 
Datum: 11:02 Mi 16.04.2008
Autor: steffenhst

Aufgabe
Ein fairer Würfel werde n mal unabhängig geworfen.
a.) Geben Sie den W-Raum (Omega,P), derart an, dass der Produktraum [mm] (\times_{i = 1}^{n} [/mm] Omega, [mm] \otimes_{i = 1}^{n} [/mm] P) das beschriebene Experiment modelliert.
b.) Sei [mm] A_{n} [/mm] das Ereignis, dass die Augenzahl zum ersten Male im n-ten Wurf erzielt wird. Bestimmen Sie [mm] A_{n} [/mm] als Teilmenge von Omega und bestimmen Sie anschließend [mm] a_{n} [/mm] = [mm] \otimes_{i = 1}^{n} [/mm] P.
c.) Bestimmen Sie den Reihenwert [mm] \summe_{i=1}^{n} a_{n}. [/mm]

Hallo an alle,

meine Lösungen:

(a) Omega = [mm] (\times_{i = 1}^{n} [/mm] Omega = [mm] (1,2,3,4,5,6)^{n} [/mm] und P = [mm] \otimes_{i = 1}^{n} [/mm] P = [mm] \bruch{|A_{n}|}{|Omega|^{n}} [/mm]  mit [mm] A_{n} \subset (1,2,3,4,5,6)^{n}. [/mm]

(b) [mm] A_{n} [/mm] = (1,2,3,4,5) x ... x (1,2,3,4,5) x (6) bzw. [mm] A_{n} [/mm] = [mm] (w_{1},...,w_{n-1},w_{n}) [/mm] mit [mm] w_{n} [/mm] = 6 und [mm] w_{1},...,w_{n-1} \in [/mm] (1,2,3,4,5).

Bei der Bestimmung [mm] P(A_{n}) [/mm] habe ich einfach die Definition des Produktmaßes angewandt, [mm] P(A_{n})=P((1,2,3,4,5) [/mm] x ... x (1,2,3,4,5) x (6)) = P((1,2,3,4,5))*...*P((1,2,3,4,5))*P((6))
= [mm] \bruch{5^{n-1}}{6^{n}} [/mm] =  [mm] \bruch{1}{5}* (\bruch{5}{6})^{n} [/mm]

c.) Der Reihenwert bestimmt sich über die geometrische Reihe und damit gilt: [mm] \summe_{i=1}^{n} (\bruch{1}{5})*(\bruch{5}{6})^{n} [/mm] = [mm] \bruch{6}{5}. [/mm]

Nun zu meinem Problem: Die Aufgabe ging mir recht locker von der Hand, so dass ich schon mal stutzig geworden bin (sprich: könnt ihr das mal kontrollieren?). Komisch finde ich auch das Ergebnis von c.). Das kann doch nicht richtig sein, bzw. was bedeutet das denn? Der Wert ist ja größer 1?

Grüße, Steffen

        
Bezug
n-maliges Würfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 11:29 Mi 16.04.2008
Autor: M.Rex

Hallo:

> Ein fairer Würfel werde n mal unabhängig geworfen.
>  a.) Geben Sie den W-Raum (Omega,P), derart an, dass der
> Produktraum [mm](\times_{i = 1}^{n}[/mm] Omega, [mm]\otimes_{i = 1}^{n}[/mm]
> P) das beschriebene Experiment modelliert.
>  b.) Sei [mm]A_{n}[/mm] das Ereignis, dass die Augenzahl zum ersten
> Male im n-ten Wurf erzielt wird. Bestimmen Sie [mm]A_{n}[/mm] als
> Teilmenge von Omega und bestimmen Sie anschließend [mm]a_{n}[/mm] =
> [mm]\otimes_{i = 1}^{n}[/mm] P.
>  c.) Bestimmen Sie den Reihenwert [mm]\summe_{i=1}^{n} a_{n}.[/mm]
>  
> Hallo an alle,
>  
> meine Lösungen:
>  
> (a) Omega = [mm](\times_{i = 1}^{n}[/mm] Omega = [mm](1,2,3,4,5,6)^{n}[/mm]
> und P = [mm]\otimes_{i = 1}^{n}[/mm] P =
> [mm]\bruch{|A_{n}|}{|Omega|^{n}}[/mm]  mit [mm]A_{n} \subset (1,2,3,4,5,6)^{n}.[/mm]
>  
> (b) [mm]A_{n}[/mm] = (1,2,3,4,5) x ... x (1,2,3,4,5) x (6) bzw.
> [mm]A_{n}[/mm] = [mm](w_{1},...,w_{n-1},w_{n})[/mm] mit [mm]w_{n}[/mm] = 6 und
> [mm]w_{1},...,w_{n-1} \in[/mm] (1,2,3,4,5).
>  
> Bei der Bestimmung [mm]P(A_{n})[/mm] habe ich einfach die Definition
> des Produktmaßes angewandt, [mm]P(A_{n})=P((1,2,3,4,5)[/mm] x ... x
> (1,2,3,4,5) x (6)) =
> P((1,2,3,4,5))*...*P((1,2,3,4,5))*P((6))
>  = [mm]\bruch{5^{n-1}}{6^{n}}[/mm] =  [mm]\bruch{1}{5}* (\bruch{5}{6})^{n}[/mm]

A und B sehen soweit gut aus.

>  
> c.) Der Reihenwert bestimmt sich über die geometrische
> Reihe und damit gilt: [mm]\summe_{i=1}^{n} (\bruch{1}{5})*(\bruch{5}{6})^{n}[/mm]
> = [mm]\bruch{6}{5}.[/mm]
>  
> Nun zu meinem Problem: Die Aufgabe ging mir recht locker
> von der Hand, so dass ich schon mal stutzig geworden bin
> (sprich: könnt ihr das mal kontrollieren?). Komisch finde
> ich auch das Ergebnis von c.). Das kann doch nicht richtig
> sein, bzw. was bedeutet das denn? Der Wert ist ja größer
> 1?

Bei der Reihe hast du dich glaube ich vertan. Der Grenzwert ist nicht [mm] \bruch{6}{5} [/mm]

>  
> Grüße, Steffen

Marius

Bezug
                
Bezug
n-maliges Würfeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:02 Mi 16.04.2008
Autor: steffenhst

Hallo Marius,

vielen Dank erstmal für die Korrektur.

Zur Reihe: Erstmal muss es natürlich [mm] \summe_{n=1}^{\infty} (\bruch{1}{5})(\bruch{5}{6})^{n} [/mm] heißen. Wenn man das umformt ergibt sich: [mm] \bruch{1}{5} [/mm] * [mm] \summe_{n=1}^{\infty} \bruch{5}{6})^{n}. [/mm] Der Reihenwert der geometrischen Reihe ist doch [mm] \summe_{n=1}^{\infty} q^{n} [/mm] = [mm] \bruch{1}{1-q} [/mm] für |q| < 1, also [mm] \bruch{1}{1 - \bruch{5}{6}} [/mm] = [mm] \bruch{1}{\bruch{6}{6} - \bruch{5}{6}} [/mm] = [mm] \bruch{1}{\bruch{1}{6}} [/mm] = 6, also [mm] \bruch{6}{5}, [/mm] oder bin ich grad zu blöd?

Grüße, steffen


Bezug
                        
Bezug
n-maliges Würfeln: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Mi 16.04.2008
Autor: M.Rex


> Hallo Marius,
>  
> vielen Dank erstmal für die Korrektur.
>
> Zur Reihe: Erstmal muss es natürlich [mm]\summe_{n=1}^{\infty} (\bruch{1}{5})(\bruch{5}{6})^{n}[/mm]
> heißen. Wenn man das umformt ergibt sich: [mm]\bruch{1}{5}[/mm] *
> [mm]\summe_{n=1}^{\infty} \bruch{5}{6})^{n}.[/mm] Der Reihenwert der
> geometrischen Reihe ist doch [mm]\summe_{n=1}^{\infty} q^{n}[/mm] =
> [mm]\bruch{1}{1-q}[/mm] für |q| < 1, also [mm]\bruch{1}{1 - \bruch{5}{6}}[/mm]
> = [mm]\bruch{1}{\bruch{6}{6} - \bruch{5}{6}}[/mm] =
> [mm]\bruch{1}{\bruch{1}{6}}[/mm] = 6, also [mm]\bruch{6}{5},[/mm] oder bin
> ich grad zu blöd?


Hallo nochmal

Du hast natürlich recht. Die Reihe Konvergiert natürlich gegen den angegebenen Grenzwert. (Ich habe den Nenner falsch in Erinnerung gehabt)
Was das für deine Aufgabe bedeutet weiss ich allerdings nicht.


EDIT: Der Grenzwertsatz für die geometrische Reihe gilt nur für Reihe der Form:

[mm] \summe_{k=\red{0}}^{+\infty}{q^{k}} [/mm]

Also musst du noch eine Indexverschiebung machen.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]