matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische Statistikmultivariate Kernfkt.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "mathematische Statistik" - multivariate Kernfkt.
multivariate Kernfkt. < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

multivariate Kernfkt.: Idee gesucht
Status: (Frage) überfällig Status 
Datum: 16:21 Fr 25.05.2012
Autor: dennis2

Aufgabe
Meine Frage ist, wie man den multivarianten Fall bei Kerndichteschätzungen behandelt.

Im univariaten Fall lautet der Kernschätzer zur Bandweite h und mit Kernfunktion K:

[mm] $\hat{f}_{h}^{K}(x)=\frac{1}{nh}\sum_{i=1}^{n}K\left(\frac{x-X_i}{h}\right)$ [/mm]

Im multivariaten Fall (d-dim.) sind die beiden Fälle zu unterscheiden, dass alle Komponenten die gleiche Bandweite haben, dann lese ich, dass die Formel lautet:

[mm] $\hat{f}_{h}^{K}(x)=\frac{1}{n}\sum_{i=1}^{n}\frac{1}{h^d}K\left(\frac{x-X_i}{h}\right)=\frac{1}{nh^d}\sum_{i=1}^{n}K\left(\frac{x_1-X_{i1}}{h},\hdots,\frac{x_d-X_{id}}{h}\right)$ [/mm]

Hat jede Komponente eine eigene Bandweite [mm] h_i, [/mm] so gilt:

[mm] $\hat{f}_{h}^{K}(x)=\frac{1}{n}\sum_{i=1}^{n}\frac{1}{h_1\hdots h_d}K\left(\frac{x_1-X_{i1}}{h_1},\hdots,\frac{x_d-X_{id}}{h_d}\right)$ [/mm]


Außerdem habe ich gelesen, dass man die multivariaten Kernfunktionen quasi auf zwei unterschiedlichen Wegen erhält:

1.) Man bildet das Produkt aus den Kernfunktionen der Komponenten und erhält dann:

[mm] $\hat{f}_{h}^{K}(\vec{x})=\frac{1}{n}\sum_{i=1}^{n}\left\{\prod_{j=1}^{d}h_j^{-1}K\left(\frac{x_j-X_{ij}}{h_j}\right)\right\}$ [/mm]

(Dies ist wohl der einfachere Weg.)

2.) Man bildet die multivariaten Entsprechungen der eindimensionalen Kernfunktionen.

Zum Beispiel ist dann die multivariate Reckteckkernfunktion:

[mm] $K(x)=\begin{cases}\frac{1}{h^d\vert S\vert^{1/2}c_0}, & \mbox{für }x^{T}S^{-1}x\leq h^2\\0, & \mbox{sonst}\end{cases}$ [/mm]

mit [mm] $c_0=\pi^{d/2}/\Gamma(d/2+1)$ [/mm] und $S=I$ bei gleicher Bandweite in allen Dimensionen, [mm] $S=\operatorname{diag}(s_1^2,\hdots,s_d^2)$ [/mm] mit den empirischen Varianzen der Stichprobe (Berücksichtigung unterschiedlicher Skalierungen) oder S gleich der empirischen Kovarianzmatrix (Berücksichtigung von Abhängigkeiten zwischen den Komponenten)$

Ich habe eigentlich drei Fragen:

(1) Woher kommt das [mm] $h^d$ [/mm] im Nenner (bzw. das [mm] $h_1\hdots h_d$)? [/mm] Anscheinend gibt es zu jeder Komponente ein $h$ bzw. ein [mm] $h_j$ [/mm] im Nenner, aber wieso ist das so? Ich sehe nicht, wie sich das erklären lässt.

(2) Wie kommt man auf diese kuriose multivariate Version der Rechteckkernfunktion?

(3) Wann darf man Produktkernfunktionen nehmen (statt sich diese multivariaten Versionen anzutun)? Immer oder nur unter bestimmten Bedingungen?

        
Bezug
multivariate Kernfkt.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 So 27.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]