matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebramultiplikative Gruppe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - multiplikative Gruppe
multiplikative Gruppe < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

multiplikative Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Di 17.01.2006
Autor: JokerX

Aufgabe
Wie viele erzeugende Elemente $x [mm] \in \IF_{1009}^{\*}$ [/mm] besitzt die multiplikative Gruppe des Körpers [mm] $(\IF_{1009},+,*)~mit~\IF_{1009}= \IZ [/mm] / 1009 [mm] \IZ$? [/mm]
Begründen Sie bitte Ihre Antwort genau.

Ich habe diese Aufgabe zu bearbeiten. Leider habe ich keinen Plan wie ich diese Aufgabe lösen soll. Ich finde nicht mal einen Ansatz zur Lösung. Ich hoffe, einer von euch kann mir einen Ansatz geben, der mir zur Lösung verhilft.

Grüsse,

JokerX

(Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.)

        
Bezug
multiplikative Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:13 Di 17.01.2006
Autor: Julius

Hallo!

Machen wir es doch gleich allgemeiner:

Ist $p$ eine Primzahl, dann gibt es [mm] $\Phi(p-1)$ [/mm] erzeugende Elemente der multiplikativen Gruppe von [mm] $\IZ_p$. [/mm]

Beweis:

Die multiplikative Gruppe [mm] $\IZ_p^{\star}$ [/mm] von [mm] $\IZ_p$ [/mm] ist zyklisch und enthält $p-1$ Elemente; sei $a$ ein Erzeugendes und $b [mm] \in \IZ_p^{\star}$ [/mm] beliebig gewählt. Dann gibt es ein $i [mm] \in \IN$ [/mm] mit [mm] $b=a^i$. [/mm] Es folgt:

$ord(b) = [mm] ord(a^i) [/mm] = [mm] \frac{p-1}{ggT(p-1,i)}$, [/mm]

also gilt: $ord(b)=p-1$ genau dann, wenn $ggT(p-1,i)=1$ gilt.

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]