matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1mündl prüfung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis des R1" - mündl prüfung
mündl prüfung < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mündl prüfung: Umfrage (beendet)
Status: (Umfrage) Beendete Umfrage Status 
Datum: 08:34 Mi 04.06.2008
Autor: AriR

hey leute

ich weiß nicht, ob das hier das richtig forum ist aber ich versuchs trotzdem mal. ich hab vor demnächst miene mündl. prüfung in reiner mathematik abzulegen (la1, ana1, ana2 werden abgefragt) nur leider hab ich echt ka, wie man sich auf so eine prüfung am besten vorbereiten kann. ich kann mir kaum vorstellen, dass man dort klausuraufgaben an der tafel vorrechnen muss, weil die zeit dafür schon viel zu knapp ist. kann mir einer von euch vllt mal sagen, was man für sein prüfung in den oben genannten fächern grob wissen muss und wie solche fragen ca aussehen und wie man sich vllt am besten darauf vorbereiten kann?

        
Bezug
mündl prüfung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:00 Mi 04.06.2008
Autor: angela.h.b.

Hallo,

ganz unbedingt solltest Du einen Termin mit Deinem Prüfer machen (damit er auch wirklich Zeit für Dich hat) und diese Fragen ihm stellen.
Wenn er nicht das Gefühl hat, daß Du von ihm exakt die 10 Fragen wissen möchtest, die er stellen wird, sondern wissen willst, von welcher Art die Fragen sein werden, wird er vermutlich gesprächs- und hilfsbereit sein. Ich habe es jedenfalls nie anders erlebt.

Die typischen Klausuraufgaben kommen in mündlichen Prüfungen nicht vor. Wie Du selbst schon sagst, dauern sie zu lange - und teilweise sind sie ja "Schimpansenmathematik", stures Vorgehen nach Schema.
Man will ja Zeit haben, Dir ein wenig auf den Zahn zu fühlen...  

Ich weiß natürlich nicht, wie es im Nebenfach ist.

Im Hauptfach jedenfalls interessiert man sich für die zentralen Definitionen und Sätze und ihre Zusammenhänge. Du müßt darauf gefaßt sein, daß Du bei Definitionen gefragt wirst, warum sie sinnvoll sind, und bei wichtigen Sätzen nach der Beweisidee. Bei "allgemein bekannten Tatsachen", die Du erwähnst, kann es sein, daß Du gebeten wirst, das gerade mal zu zeigen. Aber keine Angst - Du mußt nicht seitenweise beweisen - und man wird Dir helfen, wenn Du hängst.

Ich bin ein sehr vorsichtiger Mensch... Ich habe vor den Prüfungen meine Skripte intensiv durchgearbeitet von A-Z, die wichtigen Beweise zu führen geübt und  zu zentralen Punkten kleine "Vorträge" zusammengestellt. Bei Sätzen interessiert man sich dafür, welche Voraussetzungen gemacht werden, und was passiert, wenn diese nicht gelten.
Achso: und dann ist es gut, wenn man zu allem möglichen kleine Beispiele parat hat. Funktionen, die stetig sind, aber nicht differenzierbar,  Folgen, die beschränkt sind und nicht konvergieren, Vektorräume, deren Dimension nicht endlich ist u.v.m.

Vielleicht gibt es in Deiner Fachschaft Prüfungsprotokolle, ansonsten findet man zuhauf welche im Internet.
Da kannst Du gucken, was Du kannst und bei welchen Fragen Du in Schreckstarre gerätst.

Gruß v. Angela

Bezug
                
Bezug
mündl prüfung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:20 Mi 04.06.2008
Autor: AriR

vielen dank schonmal für den ausführlichen beitrag. wie sieht eigentlich so eine beweisskizze aus. ich mein zu den meisten sachen wie gerade mit folgen usw hat man ja gute anschauliche beweise im kopf die alles andere als formal sind. würde sowas reichen denen das anhand eines kartesischen koordiantensystems da kurz an der tafel zu präsentieren wie zB der satz, dass jede monotone beschr. folge konvergiert ?

Bezug
                        
Bezug
mündl prüfung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:25 Do 05.06.2008
Autor: SEcki


> vielen dank schonmal für den ausführlichen beitrag. wie
> sieht eigentlich so eine beweisskizze aus.

Da gibt es viele Sachen - zB man lässt unwesentliche / technische Details aus. Das sind unteranderem genau ausgetüfelte Epsilon-Schranken - das muss man a priori nicht genau machen. Auch kann man die Schritte eines Beweises abarbeiten, ohne erstmal auf die Details einzugehen. zB beim Beweis des lokalen Umkehrsatz: 1. Vereinfachung, 2. Konstruktion einer Umkehrabbildung mittels Banachschen Fixpunktsatzes, 3. Stetigkeit dieser, 4. Diff.barkeit dieser. Bei 2. dann noch die Fixpunktgleichung aufstellen.

Oder in der lin. Algebra gibt es oft Index-Schlachten - die kann man versuchen zu vermeiden, und sagen, dass man nach einer Rechnung auf dies und jenes kommt.

Es wird oft auch nach der zentralen Idee eines Beweises gefragt.

> ich mein zu den
> meisten sachen wie gerade mit folgen usw hat man ja gute
> anschauliche beweise im kopf die alles andere als formal
> sind.

Das ist ja auch gut, und wenn du das anbringst nicht schlecht. Aber von da solltest du dann einen formalen Beweis angeben können.

> würde sowas reichen denen das anhand eines
> kartesischen koordiantensystems da kurz an der tafel zu
> präsentieren wie zB der satz, dass jede monotone beschr.
> folge konvergiert ?

Kommt auf den Prüfer an. Und auf die Vorlesung. Aber das ist eine Tatsache, die man ganz leicht formal und richtig beweisen kann. Ergo: es würde nicht reichen, wenn ich es entscheiden dürfte (und ich kenne Prüfer, bei denen reicht es definitiv nicht).

Und: es kann auch vorkommen bei Prüfern, dass du ein Integral / eine Konvergenz / Kern und/oder Bild einer lin. Abbildung konkret ausrechnen musst. Alles schon da gewesen.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]