matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenmonoton steigende Folge
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Folgen und Reihen" - monoton steigende Folge
monoton steigende Folge < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

monoton steigende Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Fr 14.11.2008
Autor: Reticella

Aufgabe
[mm] a_{n}=(1+\bruch{1}{n})^{n}, n\ge1 [/mm]

zu zeigen: [mm] a_{n} [/mm] ist streng monoton steigend

Hallo,

ich habe nun so angefangen:

zu zeigen ist [mm] a_{n+1}>a_{n}, [/mm] also [mm] (1+\bruch{1}{n+1})^{n+1}>(1+\bruch{1}{n})^{n} [/mm]

nun habe ich versucht diese Ungleichung so oft umzuformen, bis sich mir ergibt warum sie richtig ist, bin leider aber nie zu einem schlüssigen ergebnis gekommen, da die Nenner nicht übereinstimmen und ich so nicht vereinfachen kann.

kann mir jemand einen Tipp geben??


vielen Dank im Vorraus Reticella


Ich habe diese Frage auf keiner anderen Website gestellt.

        
Bezug
monoton steigende Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 19:40 Fr 14.11.2008
Autor: XPatrickX

Hey,

zeige hier lieber [mm] \frac{a_n}{a_{n-1}}>1. [/mm] Das ist einfacher. Zwischendurch solltest du dann einmal die Bernoulli'sche Ungleichung anwenden.

Gruß Patrick

Bezug
                
Bezug
monoton steigende Folge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Fr 14.11.2008
Autor: Reticella

Hallo,

ich habe also [mm] (1+\bruch{1}{n})^{n}\ge2 [/mm] (Beweis durch vollstänidge Induktion)

[mm] \Rightarrow\bruch{(1+\bruch{1}{n})^{n}}{1+1}\ge1 [/mm]

[mm] \Rightarrow\bruch{(1+\bruch{1}{n})^{n}}{(1+\bruch{1}{n-1})^{n-1}}\ge\bruch{(1+\bruch{1}{n})^{n}}{1+1}\ge1 [/mm]


[mm] \Rightarrow {(1+\bruch{1}{n})^{n}}\ge{(1+\bruch{1}{n-1})^{n-1}} [/mm]

leider bräuchte ich aber ein >. kann mir bitte noch einmal jemand helfen??

vielen Dank Reticella

Bezug
                        
Bezug
monoton steigende Folge: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Fr 14.11.2008
Autor: abakus

Hallo,
du solltest den Hinweis mit  der Bernoullischen Ungleichung nicht ignorieren.
Gruß Abakus

Bezug
                                
Bezug
monoton steigende Folge: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 23:02 Fr 14.11.2008
Autor: Reticella

hallo,

hab ich doch auch oder?

z. B. von hier

[mm] \Rightarrow\bruch{(1+\bruch{1}{n})^{n}}{1+1}\ge1 [/mm]

nach hier

[mm] \Rightarrow\bruch{(1+\bruch{1}{n})^{n}}{(1+\bruch{1}{n-1})^{n-1}}\ge\bruch{(1+\bruch{1}{n})^{n}}{1+1}\ge1 [/mm]



Viele Grüße Reticella

Bezug
                                        
Bezug
monoton steigende Folge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:25 Sa 15.11.2008
Autor: Reticella

Hallo, habe mittlerweile das Problem gelöst, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]