matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikmonoton steigend, Binomialvert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Stochastik" - monoton steigend, Binomialvert
monoton steigend, Binomialvert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

monoton steigend, Binomialvert: Ansatz
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:50 Fr 14.11.2008
Autor: Damn88

Aufgabe
Seien [mm] X_i B(n,p_i)-verteilte [/mm] Zufallsvariablen i=1,2. Dabei sei [mm] p_1 [/mm] < [mm] p_2. [/mm]
Beweisen Sie: [mm] P(X_1 \le [/mm] k) [mm] \re P(X_2 \le [/mm] k) für k=0,1,...,n

Hallo zusammen, ich poste mal meinen Ansatz!
[mm] P(X_1 \le [/mm] k)  [mm] \ge P(X_2 \le [/mm]  k)
<=> 1 [mm] -P(X_1 [/mm] > k) [mm] \ge P(X_2 [/mm] > k)
<=> [mm] P(X_1 [/mm] > k) [mm] \le P(X_2 [/mm] > k)
<=> [mm] \summe_{i=k+1}^{n} \vektor{n \\ i}*p_1^{i}*(1-p_1)^{n-i} \le \summe_{i=k+1}^{n} \vektor{n \\ i}*p_2^{i}*(1-p_2)^{n-i} [/mm]

Nun Betrachte ich f(p) = [mm] \summe_{i=k+1}^{n} \vektor{n \\ i}*p^{i}*(1-p)^{n-i} [/mm]
Wenn ich zeige, dass f monoton steigend ist, dann habe ich die Behauptung bewiesen..
Also betrachte ich die Ableitung
f'(p) = [mm] \summe_{i=k+1}^{n} \vektor{n \\ i}*p^{i-1}*(1-p)^{n-i-1}(i-p*n) [/mm]
es gilt:
[mm] \vektor{n \\ i} \ge [/mm] 0
[mm] p^{i-1} \ge [/mm] 0
[mm] (1-p)^{n-i-1} \ge [/mm] 0
Also liegt das Problem bei (i-pn) denn das ist leider nicht immer [mm] \ge [/mm] 0 sondern: [mm] (i-pn)\ge [/mm] 0 <=> i [mm] \ge [/mm] pn
Aber wie zeige ich denn nun, dass f'(p) immer [mm] \ge [/mm] 0 ist?
ich habs mit Induktion versucht..aber hab es nicht hinbekommen das so umzuformen das ich die IV einsetzen kann!
Hat vielleicht jemand einen besseren Lösungsansatz?
Für Tipps wäre ich sehr dankbar!
Grüße,
Damn

        
Bezug
monoton steigend, Binomialvert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:35 Sa 15.11.2008
Autor: Kopfkirmes

Hallo,
schreibe doch die Ableitung in zwei Summen:
[mm] A=\summe_{i=k+1}^{n}\vektor{n \\k }(i)p^{i-1}(1-p)^{n-i} [/mm] und [mm] B=\summe_{i=k+1}^{n}\vektor{n \\k}(n-i)p^{i}(1-p)^{n-i-1}. [/mm]

Falls du nun zeigen kannst, dass [mm] A-B\ge0 [/mm] ist, dann hast du gezeigt, dass die Steigung von f immer größer gleich 0 ist. Um das zu zeigen kannst du z.B den Binomialkoeffizienten konkret ausschreiben in [mm] \bruch{n!}{(i)!(n-i)!}*(i) [/mm] probieren, wie du es zu deinem Gunsten umschreiben kannst.

Tipp: in vielen Summen dieser Art kommt man oft mit Indexverschiebung weiter.

Gruß
Kopfkirmes

Bezug
                
Bezug
monoton steigend, Binomialvert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:53 So 16.11.2008
Autor: Damn88

Danke schön, so in der Art hatte ich es irgendwann danach noch geschafft :)
Ich weiß nur nicht wie ich die Frage hier "abhaken" kann
Trotzdem danke für deine Hilfe!
Viele Grüße,
Damn

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]