matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenmonot.wachsend&beschränkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - monot.wachsend&beschränkt
monot.wachsend&beschränkt < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

monot.wachsend&beschränkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:25 Sa 27.02.2010
Autor: Ferolei

Aufgabe
Eine monoton wachsende, nach oben beschränke Folge ist konvergent mit Grenzwert
[mm] \limes_{n\rightarrow\infty} a_n [/mm] =sup [mm] \{a_n|n\in\IN\} [/mm]

Schönen guten Abend zusammen,

habe eine Frage zu dem Beweis. Ich finde die Aussage schon sehr logisch, verstehe aber eine Notation nicht ganz, von unserem Beweis.

1)Da die Folge nach oben beschränkt ist existiert ein Supremum. Definiere
[mm] s:=\{a_n|n\in\IN\} [/mm]
2)Sei [mm] \epsilon [/mm] > 0. Dann existiert ein N = [mm] N(\epsilon) [/mm] mit s- [mm] \epsilon [/mm] < [mm] a_N \le [/mm] s
3)Da die Folge monoton wächst, gilt: [mm] s-\epsilon [/mm] < [mm] a_N \le a_n \le [/mm] s [mm] \forall [/mm] n [mm] \ge \IN, [/mm] d.h. [mm] |s-a_n| [/mm] < [mm] \epsilon [/mm]
[mm] \forall [/mm] n [mm] \ge [/mm] N [mm] (\epsilon) [/mm]


So: meine Frage zu Schritt 2. Was soll denn dieses [mm] N(\epsilon)= [/mm] N sein ?
N war immer unsere Grenze auf der x-Achse und [mm] \epsilon [/mm] eigentlich ein sehr kleiner Wert, auf der y-Achse. Wie passt das denn hier zusammen. In meinem Bild dazu komme ich irgendwie ins Schleudern.

Schritt 3 ist dann wieder klar, aber der 2. ist mir nicht ganz deutlich geworden.


Liebe Grüße,

die Ferolei

        
Bezug
monot.wachsend&beschränkt: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Sa 27.02.2010
Autor: ChopSuey

Hallo,

eine Folge $\ [mm] (a_n)_{n \in \IN} [/mm] $ hat den Grenzwert a $\ [mm] \gdw [/mm] $ zu jedem $\ [mm] \varepsilon [/mm] > 0 \ \ [mm] \exists [/mm] \ \ [mm] n_0 \in \IN [/mm] $ so, dass $\ [mm] |a_n [/mm] - a| < [mm] \varepsilon [/mm] $ für alle $\ n > [mm] n_0 [/mm] $

Nun wird dieses $\ [mm] n_0 [/mm] $ auch gerne mit $\ [mm] n_0(\varepsilon), [/mm] N, [mm] N(\varepsilon) [/mm] $ bezeichnet.

Ist dir damit geholfen?
Gruß
ChopSuey

Bezug
                
Bezug
monot.wachsend&beschränkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Sa 27.02.2010
Autor: Ferolei


> Hallo,
>  
> eine Folge [mm]\ (a_n)_{n \in \IN}[/mm] hat den Grenzwert a [mm]\ \gdw[/mm]
> zu jedem [mm]\ \varepsilon > 0 \ \ \exists \ \ n_0 \in \IN[/mm] so,
> dass [mm]\ |a_n - a| < \varepsilon[/mm] für alle [mm]\ n > n_0[/mm]
>  
> Nun wird dieses [mm]\ n_0[/mm] auch gerne mit [mm]\ n_0(\varepsilon), N, N(\varepsilon)[/mm]
> bezeichnet.
>  
> Ist dir damit geholfen?

Fast, mir ist noch nicht ganz klar, wieso s - [mm] \epsilon [/mm] < [mm] a_N [/mm] sein muss.


>  Gruß
>  ChopSuey

LG, Ferolei

Bezug
                        
Bezug
monot.wachsend&beschränkt: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Sa 27.02.2010
Autor: SEcki


> Fast, mir ist noch nicht ganz klar, wieso s - [mm]\epsilon[/mm] <
> [mm]a_N[/mm] sein muss.

Es gibt so ein [m]a_N[/m], da s ein Supremum ist. Das ist die Supremums-Eigenschaft.

SEcki

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]