matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheoriemodulo Folge, periodisch
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Zahlentheorie" - modulo Folge, periodisch
modulo Folge, periodisch < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

modulo Folge, periodisch: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:59 Sa 02.11.2013
Autor: valoo

Aufgabe
Sei [mm] (a_{n})_{n \in \IN} [/mm] eine Folge modulo m. Zeigen Sie, dass es n und k gibt, sodass [mm] a_{i+k}=a_{i} [/mm] für alle i [mm] \ge [/mm] n

Hallo!

Irgendwie glaub ich nicht, was ich da zeigen soll. Würde das nicht bedeuten, dass jede irrationale Zahl eigentlich doch rational ist?

        
Bezug
modulo Folge, periodisch: Antwort
Status: (Antwort) fertig Status 
Datum: 02:30 Sa 02.11.2013
Autor: Al-Chwarizmi


> Sei [mm](a_{n})_{n \in \IN}[/mm] eine Folge modulo m. Zeigen Sie,
> dass es n und k gibt, sodass [mm]a_{i+k}=a_{i}[/mm] für alle i mit $\ i\ [mm] \ge [/mm] n$

>  Hallo!
>  
> Irgendwie glaub ich nicht, was ich da zeigen soll. Würde
> das nicht bedeuten, dass jede irrationale Zahl eigentlich
> doch rational ist?



Hallo valoo !

ich glaube es auch nicht. Entweder ist da irgendwo
irgendein Depp im Spiel oder aber ein Missverständnis.
Was soll genau gemeint sein mit

   "Sei [mm](a_{n})_{n \in \IN}[/mm] eine Folge modulo m ... " ?

Falls man da ursprünglich von einer beliebigen Folge
[mm](a_{n})_{n \in \IN}[/mm]  ausgeht und dann daraus die neue Folge

      [mm](a_{n}\ mod\ m)_{n \in \IN}[/mm]

bildet, so ist die behauptete Aussage jedenfalls
unsinnig.

LG ,   Al-Chw.


Bezug
        
Bezug
modulo Folge, periodisch: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:21 Mo 04.11.2013
Autor: felixf

Moin!

> Sei [mm](a_{n})_{n \in \IN}[/mm] eine Folge modulo m. Zeigen Sie,
> dass es n und k gibt, sodass [mm]a_{i+k}=a_{i}[/mm] für alle i [mm]\ge[/mm]
> n

Soll [mm] $a_n \in \IZ/m\IZ$ [/mm] sein?

Dann brauchst du noch mehr Eigenschaften der Folge, etwa eine Vorschrift der Art [mm] $a_{n+1} [/mm] = [mm] f(a_n)$ [/mm] mit einer festen Funktion $f$.

> Irgendwie glaub ich nicht, was ich da zeigen soll. Würde
> das nicht bedeuten, dass jede irrationale Zahl eigentlich
> doch rational ist?  

Wenn du das auf die Ziffernfolge anwendest (und sie als Folge in [mm] $\IZ/10\IZ$ [/mm] auffasst), wuerde es das bedeuten, ja.

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]