matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenmodulo Aufzeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - modulo Aufzeigen
modulo Aufzeigen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

modulo Aufzeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:23 So 03.10.2010
Autor: kushkush

Aufgabe
Es soll gezeigt werden, dass für $q [mm] \ne [/mm] 0 $ und $M$, zwei fest gewählte Zahlen, dass für $r,t [mm] \in \IN$ [/mm] und  $x,y [mm] \in \IZ$ [/mm] gilt:

a) $x mod(M) [mm] \equiv [/mm] ymod(M)$, wenn $x+q [mm] \equiv [/mm] y+q mod(M)$.
b) $xmod(M) [mm] \equiv [/mm] ymod(M) [mm] \Rightarrow [/mm] x [mm] \cdot q\equiv [/mm] y [mm] \cdot [/mm] q mod(M)$
c) [mm] $x^{r} \equiv [/mm] ymod(M) [mm] \Rightarrow (x^{r})^{t} \equiv y^{t} [/mm] mod ( M)$


Hallo,


a)

[mm] $x+q\equiv [/mm] y+q mod(M) [mm] \Rightarrow [/mm] (x-q)-(y+q) = (x-y) [mm] \gdw [/mm]  M|(x+q)-(x+q)$

b) [mm] $qx\equiv [/mm] qy mod(M) [mm] \Rightarrow [/mm] (qx)-(qy)=q(x-y) [mm] \gdw [/mm] M|q(x-y)$

c) [mm] $x^{rt}\equiv y^{t}mod(M) \Rightarrow (x^{rt}-y^{t}$ [/mm]

dann stecke ich fest.

Ist das richtig gelöst soweit?

Ich habe diese Frage in keinem anderen Forum gestellt und bin für jede Antwort dankbar.

        
Bezug
modulo Aufzeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:13 Mo 04.10.2010
Autor: felixf

Moin!

> Es soll gezeigt werden, dass für [mm]q \ne 0[/mm] und [mm]M[/mm], zwei fest
> gewählte Zahlen, dass für [mm]r,t \in \IN[/mm] und  [mm]x,y \in \IZ[/mm]
> gilt:
>
> a) [mm]x mod(M) \equiv ymod(M)[/mm], wenn [mm]x+q \equiv y+q mod(M)[/mm].
>  b)
> [mm]xmod(M) \equiv ymod(M) \Rightarrow x \cdot q\equiv y \cdot q mod(M)[/mm]

Warum auch immer hier $q [mm] \neq [/mm] 0$ sein soll... Manchmal verstehe ich Aufgabensteller nicht.

> c) [mm]x^{r} \equiv ymod(M) \Rightarrow (x^{r})^{t} \equiv y^{t} mod ( M)[/mm]
>  
> Hallo,
>  
>
> a)
>
> [mm]x+q\equiv y+q mod(M) \Rightarrow (x-q)-(y+q) = (x-y) \gdw M|(x+a)-(x+y)[/mm]

Da fehlt was in der Mitte, so etwas wie "$M$ teilt".

Und das ganz rechts macht keinen Sinn. Was ist $a$?! Und was willst du mit $(x + a) - (x + y)$ machen?!

> b) [mm]qx\equiv qy mod(M) \Rightarrow (qx)-(qy)=q(x-y) \gdw M|q(x-y)[/mm]

Du willst zeigen, dass $q x [mm] \equiv [/mm] q y [mm] \pmod{M}$ [/mm] ist. Und nicht annehmen, dass es so ist!

> c) [mm]x^{rt}\equiv y^{t}mod(M) \Rightarrow (x^{rt}-y^{t}[/mm]

Hier solltest du nicht mit der Holzhammermethode anfangen. Zeige erstmal eine allgemeinere Aussage als b):

   Sind $x, y, q, r [mm] \in \IZ$ [/mm] mit $x [mm] \equiv [/mm] y [mm] \pmod{M}$ [/mm] und $q [mm] \equiv [/mm] r [mm] \pmod{M}$, [/mm] so gilt $x q [mm] \equiv [/mm] y r [mm] \pmod{M}$. [/mm]

Das kannst du aus b) folgern, indem du b) zweimal verwendest.

Mit dieser Aussage kannst du c) per Induktion nach $t$ zeigen. (Setze dazu $z := [mm] x^r$; [/mm] du hast $z [mm] \equiv [/mm] y [mm] \pmod{M}$ [/mm] und willst [mm] $z^t \equiv y^t \pmod{M}$ [/mm] zeigen.)

LG Felix


Bezug
                
Bezug
modulo Aufzeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:17 Di 05.10.2010
Autor: kushkush

$ [mm] x+q\equiv [/mm] y+q mod(M) [mm] \Rightarrow [/mm] (x-q)-(y+q) = (x-y) [mm] \Rightarrow [/mm] M|(x-y) [mm] \gdw [/mm] M|(x+q)-(y+q) $

Bei b)

[mm] $x\equiv [/mm] y modm, [mm] q\equiv [/mm] r modm [mm] \Rightarrow [/mm] m|(x-y) [mm] \wedge [/mm] m|(q-r) [mm] \Rightarrow [/mm] m|(x-y)q [mm] \wedge [/mm] m|(q-r)y [mm] \Rightarrow [/mm] m|((xq-yq)+yq-yr)=(xq-yr) [mm] \gdw xq\equiv [/mm] yr mod m$

das heisst b) wäre ein Spezialfall der Multiplikation oder ? Wo [mm] $c\equiv [/mm] c mod m, [mm] x\equiv [/mm] y mod m [mm] \Rightarrow [/mm] m|(x-y) [mm] \wedge [/mm] m|(c-c) [mm] \Rightarrow [/mm] m|(x-y)c [mm] \wedge [/mm] m|(c-c)y [mm] \Rightarrow [/mm] m|((xc-yc)+(yc-yc)=(xc-yc) [mm] \gdw [/mm] xc [mm] \equiv [/mm] yc mod m $

bei c verstehe ich nicht wie ich das per Induktion zeigen kann.

[mm] $z^{t} \equiv y^{t}modm [/mm] $ gilt das als gezeigt, so bald ich zeige dass [mm] $z^{2} \equiv y^{2} [/mm] modm [mm] \gdw [/mm] z [mm] \equiv [/mm] y mod m$ weil ich ja diesen Zeigeschritt von [mm] z^{1} [/mm] zu [mm] z^{2} [/mm] unendlich oft wiederholen kann??

$z [mm] \equiv [/mm] y modm [mm] \Rightarrow m|((z-y)z+(z-y)y)=(z^{2}-y^{2})\gdw z^{2} \equiv y^{2} [/mm] modm$


Danke

Bezug
                        
Bezug
modulo Aufzeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:13 Mi 06.10.2010
Autor: abakus


> [mm]x+q\equiv y+q mod(M) \Rightarrow (x-q)-(y+q) = (x-y) \Rightarrow M|(x-y) \gdw M|(x+q)-(y+q)[/mm]
>  
> Bei b)
>
> [mm]x\equiv y modm, q\equiv r modm \Rightarrow m|(x-y) \wedge m|(q-r) \Rightarrow m|(x-y)q \wedge m|(q-r)y \Rightarrow m|((xq-yq)+yq-yr)=(xq-yr) \gdw xq\equiv yr mod m[/mm]
>
> das heisst b) wäre ein Spezialfall der Multiplikation oder
> ? Wo [mm]c\equiv c mod m, x\equiv y mod m \Rightarrow m|(x-y) \wedge m|(c-c) \Rightarrow m|(x-y)c \wedge m|(c-c)y \Rightarrow m|((xc-yc)+(yc-yc)=(xc-yc) \gdw xc \equiv yc mod m[/mm]
>
> bei c verstehe ich nicht wie ich das per Induktion zeigen
> kann.
>  
> [mm]z^{t} \equiv y^{t}modm[/mm] gilt das als gezeigt, so bald ich
> zeige dass [mm]z^{2} \equiv y^{2} modm \gdw z \equiv y mod m[/mm]
> weil ich ja diesen Zeigeschritt von [mm]z^{1}[/mm] zu [mm]z^{2}[/mm]
> unendlich oft wiederholen kann??

Im Prinzip ja. Nur die Verwendung des [mm] \gdw [/mm] -Pfeiles ist falsch.
Auch aus z [mm] \equiv [/mm] -y mod m folgt [mm] z^{2} \equiv y^{2} [/mm] mod m.
Gruß Abakus

>
> [mm]z \equiv y modm \Rightarrow m|((z-y)z+(z-y)y)=(z^{2}-y^{2})\gdw z^{2} \equiv y^{2} modm[/mm]
>  
>
> Danke


Bezug
                                
Bezug
modulo Aufzeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:52 Mi 06.10.2010
Autor: kushkush

Ok Danke soweit, aber wie kann ich das jetzt induzieren, oder reicht das schon als Beweis?

Bezug
                                        
Bezug
modulo Aufzeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:04 Mi 06.10.2010
Autor: schachuzipus

Hallo,

> Ok Danke soweit, aber wie kann ich das jetzt induzieren,
> oder reicht das schon als Beweis?

Mache einfach den Induktionsschritt [mm]t\to t+1[/mm]

IV: Sei [mm]t\in\IN[/mm] und gelte [mm]x^q \ \equiv \ y^q \ \operatorname{mod}(m)\ \ \text{für alle} \ q\le t[/mm]

Dann gilt also [mm]x^t \ \equiv \ y^t \ \operatorname{mod}(m)[/mm] und [mm]x \ \equiv \ y \ \operatorname{mod}(m)[/mm]

Mit dem oben gezeigten folgt: [mm]x^t\cdot{}x \ \equiv \ y^t\cdot{}y \ \operatorname{mod}(m)[/mm], also die Beh.

Gruß

schachuzipus


Bezug
                                                
Bezug
modulo Aufzeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:52 Mi 06.10.2010
Autor: kushkush

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]