matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraminimalpolynom
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Algebra" - minimalpolynom
minimalpolynom < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

minimalpolynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:57 Sa 24.11.2012
Autor: drossel

Sei [mm] f(X)=X^2+pX+q \in [/mm] K[X] irreduzibel, L=K[X]/(f) Körper und [mm] y=a+bx\in [/mm] L, wobei [mm] a,b\in [/mm] K. Wie kann man hier das Minimalpolynom von [mm] y\in [/mm] L berechnen?

Ich hab leider schon Schwierigkeiten einen Ansatz zu finden.
Kann man von vornherein sagen, welchen Grad das Minimalpolynom [mm] m_y [/mm] von y haben muss ? Es muss aber schonmal [mm] grad(m_y)\ge [/mm] 1 denke ich.
Ich poste mal den Versuch der mich zu nichts geführt hat ( damit ich zeigen kann, dass ich mir wirklich selbst Gedanken gemacht habe): Mein Versuch bisher :
[mm] m_y(y)=0 [/mm] in L, dh. [mm] m_y(y)=X^2+pX+q [/mm] (ist ja 0 in L) und dann hab ich falls das Min.pol. ein Polynom von Grad 1 ist, also [mm] m_y=x+t [/mm] , t [mm] \in [/mm] K
[mm] m_y(y)=0 [/mm] <=> [mm] X^2+(p-b)X+(q-t-a)=0 [/mm] das bringt aber nichts irgendwie..
(zb für's ausrechnen was t ist)
Sonst hab ich leider keine Idee. Kann mir da jemand einen Tipp/einen Anstubser geben? Wäre sehr dankbar!
Gruß

        
Bezug
minimalpolynom: Antwort
Status: (Antwort) fertig Status 
Datum: 21:07 So 25.11.2012
Autor: felixf

Moin!

> Sei [mm]f(X)=X^2+pX+q \in[/mm] K[X] irreduzibel, L=K[X]/(f) Körper
> und [mm]y=a+bx\in[/mm] L, wobei [mm]a,b\in[/mm] K. Wie kann man hier das
> Minimalpolynom von [mm]y\in[/mm] L berechnen?
>  
> Ich hab leider schon Schwierigkeiten einen Ansatz zu
> finden.
>
>  Kann man von vornherein sagen, welchen Grad das
> Minimalpolynom [mm]m_y[/mm] von y haben muss ? Es muss aber schonmal
> [mm]grad(m_y)\ge[/mm] 1 denke ich.

Wenn $b [mm] \neq [/mm] 0$ ist, ja.

>  Ich poste mal den Versuch der mich zu nichts geführt hat
> ( damit ich zeigen kann, dass ich mir wirklich selbst
> Gedanken gemacht habe): Mein Versuch bisher :
>  [mm]m_y(y)=0[/mm] in L, dh. [mm]m_y(y)=X^2+pX+q[/mm] (ist ja 0 in L) und
> dann hab ich falls das Min.pol. ein Polynom von Grad 1 ist,
> also [mm]m_y=x+t[/mm] , t [mm]\in[/mm] K
>   [mm]m_y(y)=0[/mm] <=> [mm]X^2+(p-b)X+(q-t-a)=0[/mm] das bringt aber nichts

> irgendwie..
>  (zb für's ausrechnen was t ist)
>  Sonst hab ich leider keine Idee. Kann mir da jemand einen
> Tipp/einen Anstubser geben? Wäre sehr dankbar!

Nun, es ist doch $f(x) = 0$. Wenn $a [mm] \neq [/mm] 0$ ist, dann ist $0 = f(x) = [mm] f(a^{-1} [/mm] (a x + b) - [mm] a^{-1} [/mm] b) = (f [mm] \circ [/mm] g)(x)$ mit $g = [mm] a^{-1} [/mm] a T - [mm] a^{-1} [/mm] b [mm] \in [/mm] K[T]$. Wegen $K(a x + b) = K(x)$ muss [mm] $\deg m_y [/mm] = [mm] \deg [/mm] f$ sein, und da [mm] $\deg [/mm] (f [mm] \circ [/mm] g) = [mm] \deg [/mm] f$ ist, muss somit $f [mm] \circ [/mm] g$ ein Vielfaches des Minimalpolynoms sein.

Ist $a = 0$, so ist $y = b [mm] \in [/mm] K$ und [mm] $m_y [/mm] = T - b [mm] \in [/mm] K[T]$.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]