matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und Ebenenminimaler abstand 2er geraden
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Geraden und Ebenen" - minimaler abstand 2er geraden
minimaler abstand 2er geraden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

minimaler abstand 2er geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:43 So 28.01.2007
Autor: thary

hey ihr..

wenn man zwei windschiefe geraden hat und von denen den minimalen abstand haben will, wie macht man das?

kann man mit einer senkrechten rechnen oder muss man sich einfach einen festen punkt auf der einen suchen und einen variablen auf der anderen und dann den verbindungsvektor berechnen (variable minimal?)

danke!

        
Bezug
minimaler abstand 2er geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 So 28.01.2007
Autor: chrisno

Das geht am einfachsten mit dem Spatprodukt.

Abstand zweier Geraden:
Differenzvektor zwischen den Stützvektoren der Geraden: $ [mm] \vec{a} [/mm] $
Richtungsvektor der einen Geraden: $ [mm] \vec{b} [/mm] $
Richtungsvektor der anderen Geraden: $ [mm] \vec{c} [/mm] $
$ [mm] \vec{a}, \vec{b} [/mm] $ und $ [mm] \vec{c} [/mm] $ spannen einen Spat auf. Dessen Höhe h ist der gesuchte Abstand.
h = Volumen des Spates / Grunfläche ....

Bezug
                
Bezug
minimaler abstand 2er geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 07:04 Mo 29.01.2007
Autor: thary

hey

dh, wenn ich den abstand suche,dann schaue ich in der formelsammlung nach der formel

axb*c und habe dann den abstand?

danke!

Bezug
                        
Bezug
minimaler abstand 2er geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 13:23 Mo 29.01.2007
Autor: riwe

das stimmt
da der spat in der regel 3 von einander verschiedene "grundflächen" hat, bliebe die frage, welche zu nehmen ist,
es ist wohl die gemeint, die von den beiden richtungsvektoren aufgespannt wird,
dann entspricht die division durch die grundfläche der normierung des normalenvektors, also:

[mm] d(g,h)=|\vec{a}\cdot\vec{n_0}| [/mm]

mit wie oben [mm] \vec{a}=\vec{p}-\vec{q} [/mm] differenzvektor der beiden stützvektoren.

[mm] \vec{n}_0 [/mm] ist der einheitsvektor von [mm] \vec{n}=\vec{b}\times\vec{c} [/mm]

bemerkung: für mich selbst ist allerdings die vorstellunganschaulicher, dass der verbindungsvektor PQ auf die normale projiziert wird, womit man den senkrechten abstand der beiden geraden erhält.



Bezug
                        
Bezug
minimaler abstand 2er geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 22:19 Mo 29.01.2007
Autor: chrisno


> hey
>  
> dh, wenn ich den abstand suche,dann schaue ich in der
> formelsammlung nach der formel
>  
> axb*c und habe dann den abstand?

Du mußt noch durch die Grundfläche teilen und nötigenfalls den Betrag bilden. Die Grundfläche ist das Parallelogramm, das von den beiden Richtungsvektoren aufgespannt wird. Zeichne das mal, es klappt nicht im ersten Anlauf.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]