matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraische Geometrieminimale Auflösung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Algebraische Geometrie" - minimale Auflösung
minimale Auflösung < Algebraische Geometrie < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

minimale Auflösung: Idee
Status: (Frage) überfällig Status 
Datum: 22:53 Mo 30.09.2013
Autor: flipflop

Aufgabe
Sei X eine torische Fläche, die genau einen singulären Punkt p hat. Sei [mm]\varphi \colon Y \rightarrow X[/mm] eine Auflösung von Singularitäten mit der Eigenschaft, dass [mm]E \cdot E \neq -1[/mm] für jede irreduzible Komponente E von [mm]\varphi^{-1} (p) [/mm] gilt. Zeige, dass  [mm] \varphi [/mm] eine minimale Auflösung ist.
Sei dazu [mm]\psi \colon Z \rightarrow X[/mm] eine weitere Auslösung von Singularitäten. Setze [mm]S = Z \times_X Y [/mm] und sei R eine Auflösung von S. Dann haben wir ein kommutatives Diagramm von Morphismen
[mm] \begin{matrix} R & \stackrel{\alpha}{\rightarrow} &Y\\ \downarrow \beta & & \downarrow \varphi\\ Z & \stackrel{\psi}{\rightarrow} & X \end{matrix} [/mm]

(a) Es reicht zu zeigen, dass [mm]\beta[/mm] ein Isomorphismus ist.
(b) Falls nicht, wende Hartshorne V.5.3 an um zu zeigen, dass [mm]\beta[/mm] als Sequenz von Aufblasungen von Punkten faktorisiert. Also enthält R  Kurven L in der exzeptionellen Faser über p mit [mm]L\cdot L =-1[/mm].
(c) Sei L eine irreduzible Kurve auf R mit [mm]L \cdot L =-1[/mm]. Zeige, dass [mm]E\cdot E =-1[/mm] für [mm]E = \alpha(L)[/mm] gilt.
(d) Folgere, dass [mm]\beta[/mm] ein Isomorphismus ist.

Ich versuche gerade einige Übungsaufgaben aus dem Buch Toric varieties von Cox, Little und Schenck zu lösen, darunter auch die Aufgabe 10.4.7, deren Aufgabentext ich hier abgetippt habe.
Die Aufgabenteile (a) (wenn [mm]\beta[/mm] ein Isomorphismus ist, dann gilt [mm]\psi = \varphi \circ (\alpha \circ \beta^{-1})[/mm], d.h. [mm]\varphi[/mm] ist minimal) und (d) (dann hat man einen Widerspruch zur Voraussetzung, d.h. [mm]\beta[/mm] ist ein Iso) sind mir klar, aber mit den Aufgabenteilen (b) und (c) komme ich nicht weiter. Ich komme auch nicht darauf, wie ich V.5.3 von Hartshorne anwenden soll.
Es wäre toll, wenn mit jemand weiterhelfen könnte!

Als Info:

Theorem V.5.3, Hartshorne:
Sei [mm] f\colon X' \rightarrow X [/mm] ein birationaler Morphismus von (projektiven, nicht-singulären) Flächen. Sei p ein fundamentaler Punkt von [mm]f^{-1}[/mm]. Dann faktorisiert f durch die monoidale Transformation [mm]\pi \colon \widetilde{X} \rightarrow X[/mm] mit Zentrum p.

Definition minimale Auflösung:
Eine Auflösung von Singularitäten [mm]\varphi \colon Y \rightarrow X[/mm] heißt minimal, falls für jede weitere Auflösung [mm]\psi \colon Z \rightarrow X[/mm] ein Morphismus [mm]f \colon Z \rightarrow Y[/mm] existiert mit [mm]\varphi \circ f = \psi[/mm].


        
Bezug
minimale Auflösung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:20 Di 08.10.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebraische Geometrie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]