matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastikmin/max von ZV unkorreliert
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - min/max von ZV unkorreliert
min/max von ZV unkorreliert < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

min/max von ZV unkorreliert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Do 14.04.2011
Autor: Teufel

Hi!

Ich wollte nur mal folgendes fragen:
Wenn [mm] X_1, [/mm] ..., [mm] X_n [/mm] identisch verteilte, unabhängige Zufallsvariablen sind, gilt dann [mm] Cov(min(X_i), max(X_i))=0? [/mm]
Ich muss nämlich [mm] Var(min(X_i)+max(X_i)) [/mm] berechnen und wollte [mm] Var(min(X_i))+Var(max(X_i)) [/mm] daraus machen, aber das geht ja nur, wenn die beiden Zufallsvariablen unkorreliert wären.

Kann mir da bitte jemand helfen?
Falls es auch wichtig ist: die [mm] X_i [/mm] sind nur gleichverteilt auf einem Intervall.

        
Bezug
min/max von ZV unkorreliert: Antwort
Status: (Antwort) fertig Status 
Datum: 16:34 Do 14.04.2011
Autor: vivo

Hallo,

liegt eine über [mm][0,1][/mm] gleichverteilte Grundgesamtheit vor, so gilt:

[mm]X_{(k)} \sim Be(k,n-k+1)[/mm] und
[mm]Cov(X_{(k)},X_{(l)})=\frac{k(n-l+1)}{(n+1)^2(n+2)}[/mm] und
[mm]Var(X_{(k)})=\frac{k(n-k+1)}{(n+1)^2(n+2)}[/mm]

wobei [mm]X_{(i)}[/mm] die geordneten ZV sind für [mm]i=1,2,..,n[/mm]

allgemein gilt:

[mm]Var(X+Y)=Var(X)+Var(Y)+2Cov(X,Y)[/mm]

grüße

Bezug
                
Bezug
min/max von ZV unkorreliert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 Do 14.04.2011
Autor: Teufel

Hi!

Danke erst einmal.

Genau, wegen der zuletzt von dir genannten Formel wollte ich ja sichergehen, dass die Kovarianz 0 ist.

Aber was ist diese Be-verteilung?
Ach ja, es sollen auch stetige Zufallsvariablen sein. Ganz vergessen.

Bezug
                        
Bezug
min/max von ZV unkorreliert: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Do 14.04.2011
Autor: luis52


> Hi!
>  
> Danke erst einmal.
>  
> Genau, wegen der zuletzt von dir genannten Formel wollte
> ich ja sichergehen, dass die Kovarianz 0 ist.

Vivos Beispiel zeigt, dass deine Vermutung i.a. nicht zutrifft ...

>  
> Aber was ist diese Be-verteilung?

Die Beta-Verteilung.

>  Ach ja, es sollen auch stetige Zufallsvariablen sein. Ganz
> vergessen.

Auch hierfuer ist Vivos Szeanario ein Gegenbeispiel.

vg Luis


Bezug
                                
Bezug
min/max von ZV unkorreliert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:12 Do 14.04.2011
Autor: Teufel

Hm ok, ich glaube hier gab es ein paar Missverständnisse.
Also ich habe n stetige Zufallsvariablen [mm] X_1, [/mm] ... , [mm] X_n, [/mm] alle unabhängig und identisch verteilt. Alle sind gleichverteilt auf [a,b].

Nun bastel ich mir daraus 2 neue Zufallsvariablen [mm] min(X_i) [/mm] und [mm] max(X_i) [/mm] (wobei die i eben von 1 bis n gehen).

Und jetzt muss ich aus der Summe der beiden die Varianz bestimmen, also [mm] Var(min(X_i)+max(X_i)). [/mm] Da ich keine Ahnung habe, ich ich das machen soll, war meine einzige Möglichkeit vielleicht zu zeigen, dass [mm] Cov(min(X_i), max(X_i))=0 [/mm] ist, denn dann könnte man ja die Varianz einfach aufspalten.

Also es geht hier nur um gleichverteilte Zufallsvariablen! Hätte ich vielleicht direkt am Anfang schon deutlicher hervorheben sollen.

Aber wenn die Kovarianz hier auch nicht 0 ist: kann mir jemand einen Tipp geben, wie ich die Varianz berechnen kann?

Bezug
                                        
Bezug
min/max von ZV unkorreliert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Do 14.04.2011
Autor: luis52

Moin,


es steht (fast) alles in Vivos Antwort, wo in [0,1] gleichverteilte Zufallsvariablen unterstellt werden.  In seiner Notation ist [mm] $\max X_i=X_{(n)} [/mm] und [mm] $\min X_i=X_{(i)}$. [/mm]

In $[a,b]$ gleichverteilte Zufallsvariablen erhaeltst du durch [mm] $X_i\to(b-a)X_i+a$. [/mm]

vg Luis


Bezug
                                        
Bezug
min/max von ZV unkorreliert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:00 Do 14.04.2011
Autor: vivo

Hallo,

Luis52 meint natürlich [mm]min X_i = X_{(1)}[/mm]

und er hat natürlich recht, alles steht in meinem ersten Beitrag.

Die allgemeine Varianzformel für Summen, die Varianz für das Max und das Min und die Cov der beiden.

grüße

Bezug
                                                
Bezug
min/max von ZV unkorreliert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:23 Do 14.04.2011
Autor: Teufel

Ah ok, vielen Dank! Ich wusste nur mit der Schreibweise [mm] X_{(1)} [/mm] und [mm] X_{(n)} [/mm] nichts anzufangen.
Kannst du mir sagen, wie du auf die Kovarianz kommst? Also die Dichten für [mm] X_{(1)} [/mm] und [mm] X_{(n)} [/mm] konnte ich berechnen (zu Fuß, also ohne zu wissen, dass etwas betaverteiltes rauskommt). Aber ich weiß nicht, wie man dann die Kovarianz der beiden Zufallsvariablen berechnen kann. Die Varianz selber ist ok.

Bezug
                                                        
Bezug
min/max von ZV unkorreliert: Antwort
Status: (Antwort) fertig Status 
Datum: 20:32 Do 14.04.2011
Autor: vivo

Hi,

in meinem ersten Beitrag ist es ja nicht nur für min und max sondern ganz allgemein für die Ordnungsstatistiken. Für die Cov brauchst du die gemeinsame Dichte der Ordnungsstatistiken.

Sehr schön hergeleitet z.B. in nichtparametrische statistische Methoden von Herbert Büning.

Grüße

Bezug
                                                                
Bezug
min/max von ZV unkorreliert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:39 Do 14.04.2011
Autor: luis52


>
> Sehr schön hergeleitet z.B. in nichtparametrische
> statistische Methoden von Herbert Büning.

... und Götz Trenkler. (So viel Zeit muss sein! ;-))



Bezug
                                                                        
Bezug
min/max von ZV unkorreliert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:54 Do 14.04.2011
Autor: vivo

... aber natürlich ... .-)

Bezug
                                                                
Bezug
min/max von ZV unkorreliert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:10 Do 14.04.2011
Autor: Teufel

Uff, ok, ich formuliere das dann also mal lieber nicht aus. Ich finde das etwas happig für einen Aufgabenzettel. :/

Aber vielen Dank für eure Hilfe!

Bezug
                                                                        
Bezug
min/max von ZV unkorreliert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Do 14.04.2011
Autor: vivo

vielleicht geht's ja auch einfacher,evtl. mit eiwas das ihr in der vl  hattet. Was ist es denn für eine?

Bezug
                                                                                
Bezug
min/max von ZV unkorreliert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:40 Do 14.04.2011
Autor: Teufel

Ich höre Statistik I. Das einzige, das wir bis jetzt gemacht haben, waren Maximum-Likelihood-Schätzer. Nichts wildes. Ich habe auch im letzten Semester Einführung in die Wahrscheinlichkeitstheorie und mathematische Statistik gehört, aber auch da wurde die Betafunktion nur mal namentlich erwähnt. Tiefergehend haben wir uns nicht mit ihr beschäftigt.

Bezug
                                                                                        
Bezug
min/max von ZV unkorreliert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:21 Do 14.04.2011
Autor: vivo

Hi,

also für einen Aufgaben-Zettel ist die Herleitung der gemeinsamen Verteilung von Ordnungsstatistiken wie in dem Buch, wahrscheinlich übertrieben. Allerdings wird es auch viel einfacher wenn man nur das Min und Max betrachtet.

Du hast geschrieben, dass du bereits die Verteilung des Min und des Max zu Fuß hergeleitet hast. Fehlt ja nur noch die gemeinsame.

Viele Grüße

Bezug
                                                                                                
Bezug
min/max von ZV unkorreliert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:10 Do 14.04.2011
Autor: Teufel

Hm ja.

Also wenn die [mm] X_i [/mm] gleichverteilt auf [a,b] sind, müsste ja dann [mm] f_{max(X_i)}(x)=\frac{n}{(b-a)^n}*(x-a)^{n-1} [/mm] sein. Und [mm] f_{min(X_i)}(x)=\frac{n}{(b-a)^n}*(b-x)^{n-1}, [/mm] wenn ich mich nicht täusche.

Bei der gemeinsamen verteilung wusste ich nicht so genau.
Ich wollte über die Verteilungsfunktion gehen, also [mm] $P(max(X_i)\le [/mm] r, [mm] min(X_i)\le [/mm] s)=...$ und das Ergebnis dann partiell nach r und dann nach s ableiten (oder eben umgedreht). Das wäre ja dann die gemeinsame Dichte. Dann bräuchte ich für die Kovarianz ja [mm] E(max(X_i)*min(X_i)) [/mm] und müsste [mm] \integral_{\IR}^{}{\integral_{\IR}^{}{xyf_{max(X_i),min(X_i)}(x,y) dx} dy} [/mm] berechnen, oder?

Bezug
                                                                                                        
Bezug
min/max von ZV unkorreliert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:05 Fr 15.04.2011
Autor: vivo

sollte klappen, probiers doch mit auf 0 1 gleichverteilten aus und schau ob das gleiche rauskommtsatur wie oben.

Bezug
                                                                                                                
Bezug
min/max von ZV unkorreliert: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Fr 15.04.2011
Autor: Teufel

Ok, vielen Dank für eure Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]