matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFunktionenmetrischer Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Funktionen" - metrischer Raum
metrischer Raum < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

metrischer Raum: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:40 Fr 08.04.2011
Autor: Kampfkekschen

Aufgabe
Bestimmen Sie ob die Paare (X,d) die Axiome eines metrischen Raums erfüllen

[mm] X=\IR [/mm] und [mm] d(x,y)=(x-y)^2 [/mm]

Hallo zusammen,

ich beschäftige mich grade mit der Aufgabe und wäre echt froh wenn mir jemand etwas helfen könnte.

Also damit das Paar ein metrischer Raum ist müssen folgende Axiome erfüllt sein:
1) d(x,y)=0 => x=y
2)d(x,y)=d(y,x)
3)d(x,z) [mm] \le [/mm] d(x,y)+d(y,z)

so jetzt habe ich dann folgendermaßen begonnen
1) [mm] d(x,y)=(x-y)^2 [/mm] =0
=>x-y=0
=>x=y
erstes Axiom erfüllt

2) [mm] (x-y)^2=(y-x)^2 [/mm]
=>x-y=y-x
=>2x=2y
=>x=y
hierbei bin ich mir allerdings nicht sicher..

3) ich weiß jetzt nicht genau wie ich die dreiecksungleichung zeigen soll bzw kann
muss ja irgendwie zum schluss auf das ergebnis [mm] (x-z)^2 \le (x-y)^2+(y-z)^2 [/mm] kommen..gibts da vllt einen "trick" der mir weiterhelfen kann?

danke schonmal!
Gruß,
Kekschen

        
Bezug
metrischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Fr 08.04.2011
Autor: schachuzipus

Hallo Kampfkekschen,

> Bestimmen Sie ob die Paare (X,d) die Axiome eines
> metrischen Raums erfüllen
>
> [mm]X=\IR[/mm] und [mm]d(x,y)=(x-y)^2[/mm]
> Hallo zusammen,
>
> ich beschäftige mich grade mit der Aufgabe und wäre echt
> froh wenn mir jemand etwas helfen könnte.
>
> Also damit das Paar ein metrischer Raum ist müssen
> folgende Axiome erfüllt sein:
> 1) d(x,y)=0 => x=y

Na, entweder 1a) [mm]d(x,x)=0[/mm] und 1b) [mm]d(x,y)=0\Rightarrow x=y[/mm] oder 1) [mm]d(x,y)=0\gdw x=y[/mm]

> 2)d(x,y)=d(y,x)
> 3)d(x,z) [mm]\le[/mm] d(x,y)+d(y,z)
>
> so jetzt habe ich dann folgendermaßen begonnen
> 1) [mm]d(x,y)=(x-y)^2[/mm] =0
> =>x-y=0
> =>x=y
> erstes Axiom erfüllt [ok]

Und die Richtung [mm]x=y\Rightarrow d(x,y)=0[/mm] noch ...

>
> 2) [mm](x-y)^2=(y-x)^2[/mm]
> =>x-y=y-x

Wieso? Zunächst mal ist doch [mm]\sqrt{a^2}[/mm] doch [mm]|a|[/mm]

Also [mm]\sqrt{(x-y)^2}=|x-y|[/mm] und analog auf der anderen Seite!

So kannst du ansetzen, da der Betrag symmetrisch ist (ist ja eine Metrik auf [mm]\IR[/mm])

Alternativ:

[mm]d(x,y)=(x-y)^2=\left[(-1)\cdot{}(y-x)\right]^2=(-1)^2\cdot{}(y-x)^2=(y-x)^2=d(y,x)[/mm]

> =>2x=2y
> =>x=y
> hierbei bin ich mir allerdings nicht sicher..


>
> 3) ich weiß jetzt nicht genau wie ich die
> dreiecksungleichung zeigen soll bzw kann
> muss ja irgendwie zum schluss auf das ergebnis [mm](x-z)^2 \le (x-y)^2+(y-z)^2[/mm]
> kommen..gibts da vllt einen "trick" der mir weiterhelfen
> kann?

Naja, eigentlich "sieht" man doch schon durch scharfes Hingucken, dass das wohl nicht klappen kann für alle reellen Zahlentripel.

Probiere mal als Gegenbsp. [mm]x=4, y=3, z=1[/mm]

>
> danke schonmal!
> Gruß,
> Kekschen

LG

schachuzipus


Bezug
                
Bezug
metrischer Raum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:13 Fr 08.04.2011
Autor: Kampfkekschen

okay danke für die erklärungen!
hab jetzt noch ein weiteres beispiel bearbeitet und wollte mal fragen obs so richtig ist:

Sei X= [mm] \IR^n d((x_1,...,x_n),(y_1,..,y_n))=|x_1-y_1| [/mm]

also 1a) [mm] d((x_1,...,x_n),(x_1,..,x_n)= |x_1-x_1|=|0|=0 [/mm]
1b) [mm] d((x_1,...,x_n),(y_1,..,y_n)=0 [/mm]
=> [mm] |x_1-y_1|=0 [/mm] => [mm] x_1-y_1=0 [/mm] => [mm] x_1=y_1 [/mm]

jetzt das zweite Axiom:
2) [mm] d((x_1,...,x_n),(y_1,..,y_n)= |x_1-y_1|= |(-1)(y_1-x_1)|= |(-1)|*|y_1-x_1|= |y_1-x_1|= d((y_1,...,y_n),(x_1,..,x_n) [/mm]

3) [mm] d((x_1,...,x_n),(z_1,..,z_n) \le d((x_1,...,x_n),(y_1,..,y_n) [/mm] + [mm] d((y_1,...,y_n),(z_1,..,z_n) [/mm]
=> [mm] d((x_1,...,x_n),(z_1,..,z_n)= |x_1-z_1|= |(x_1-y_1)+(y_1-z_1)| \le |x_1-y_1|+|y_1-z_1| [/mm] = [mm] d((x_1,...,x_n),(y_1,..,y_n))+d((y_1,...,y_n),(z_1,..,z_n)) [/mm]

also sind die Axiome erfüllt, dass heißt das Paar (X,d) ist ein metrischer Raum
kann man das so machen?

Gruß,
Kekschen

Bezug
                        
Bezug
metrischer Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:39 Fr 08.04.2011
Autor: MathePower

Hallo Kampfkekschen,

> okay danke für die erklärungen!
>  hab jetzt noch ein weiteres beispiel bearbeitet und wollte
> mal fragen obs so richtig ist:
>  
> Sei X= [mm]\IR^n d((x_1,...,x_n),(y_1,..,y_n))=|x_1-y_1|[/mm]
>  
> also 1a) [mm]d((x_1,...,x_n),(x_1,..,x_n)= |x_1-x_1|=|0|=0[/mm]
>  1b)
> [mm]d((x_1,...,x_n),(y_1,..,y_n)=0[/mm]
>  => [mm]|x_1-y_1|=0[/mm] => [mm]x_1-y_1=0[/mm] => [mm]x_1=y_1[/mm]



Es gibt aber auch Punkte [mm]x \not= y, \ x,y \in \IR^{n}[/mm],
die den  Abstand 0 haben.

Beispiel: n=2

[mm]\pmat{x_{1} \\ x_{2}}=\pmat{1 \\ 0}, \ \pmat{y_{1} \\ y_{2}}=\pmat{1 \\ 1}[/mm]

Dann ist

[mm]d((x_1,x_2),(y_1,y_2)=\vmat{1-1}=0[/mm]

obwohl [mm]\pmat{x_{1} \\ x_{2}} \not= \pmat{y_{1} \\ y_{2}}[/mm]


>  
> jetzt das zweite Axiom:
>  2) [mm]d((x_1,...,x_n),(y_1,..,y_n)= |x_1-y_1|= |(-1)(y_1-x_1)|= |(-1)|*|y_1-x_1|= |y_1-x_1|= d((y_1,...,y_n),(x_1,..,x_n)[/mm]
>  


> 3) [mm]d((x_1,...,x_n),(z_1,..,z_n) \le d((x_1,...,x_n),(y_1,..,y_n)[/mm]
> + [mm]d((y_1,...,y_n),(z_1,..,z_n)[/mm]
>  => [mm]d((x_1,...,x_n),(z_1,..,z_n)= |x_1-z_1|= |(x_1-y_1)+(y_1-z_1)| \le |x_1-y_1|+|y_1-z_1|[/mm]

> =
> [mm]d((x_1,...,x_n),(y_1,..,y_n))+d((y_1,...,y_n),(z_1,..,z_n))[/mm]
>  
> also sind die Axiome erfüllt, dass heißt das Paar (X,d)
> ist ein metrischer Raum


Für welche n das ein metrischer Raum ist, ist noch zu prüfen.


>  kann man das so machen?
>  
> Gruß,
>  Kekschen


Gruss
MathePower

Bezug
                                
Bezug
metrischer Raum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:53 Di 12.04.2011
Autor: Kampfkekschen

Okay das hab ich übersehen! Danke für die Hilfe! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]