matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesmetrische Räume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis-Sonstiges" - metrische Räume
metrische Räume < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

metrische Räume: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:20 Sa 23.05.2009
Autor: Sachsen-Junge

Aufgabe
Für nichtleere Mengen A;B [mm] \subset [/mm] X ist der Abstand von A nach B definiert durch d(A;B) =
inf [mm] \{d(a; b)| a \in A; b \in B \} [/mm]
Beweise oder widerlege: Sind A;B abgeschlossen in X und disjunkt,
so ist d(A;B) > 0.  

Hallo liebes Team,

mein Beweis ist ziemlich kurz und ich denke deswegen, dass dieser falsch ist.

Mein Beweis:

Sei inf [mm] \{d(a; b)| a \in A; b \in B \}=0 [/mm]

d.h d(a,b)=0 [mm] \Rightarrow [/mm] a=b, d.h. [mm] A\cap [/mm] B [mm] \not= \emptyset. [/mm]

Dieses ist aber ein Widerspruch zur Voraussetzung.

Da die Metrik [mm] \ge [/mm] 0 ist, folgt:
inf [mm] \{d(a; b)| a \in A; b \in B \}> [/mm] 0

        
Bezug
metrische Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 19:18 Sa 23.05.2009
Autor: pelzig


> Sei inf [mm]\{d(a; b)| a \in A; b \in B \}=0[/mm]  
> d.h d(a,b)=0 [mm]\Rightarrow[/mm] a=b, d.h. [mm]A\cap[/mm] B [mm]\not= \emptyset.[/mm]

Falsch. Das Infimum muss ja nicht unbedingt angenommen werden. Betrachte zum Beispiel [mm] $X=\IR$ [/mm] mit der Betragsmetrik, [mm] $A=\{0\}, [/mm] B=(0,1]$. Dann ist d(A,B)=0, obwohl die Mengen disjunkt sind.

Gruß, Robert

Bezug
                
Bezug
metrische Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Sa 23.05.2009
Autor: Sachsen-Junge

ah stimmt ja....

dann ist dieses bsp.  ja ein gegenbeispiel...

Ich danke Ihnen.

Liebe Grüße


Bezug
                        
Bezug
metrische Räume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:23 Sa 23.05.2009
Autor: pelzig


> dann ist dieses bsp.  ja ein gegenbeispiel...

Ein Gegenbeispiel für deinen falschen Beweis. Die Behauptung der Aufgabe stimmt aber trotzdem.

Gruß, Robert

Bezug
                                
Bezug
metrische Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:27 Sa 23.05.2009
Autor: Sachsen-Junge

wie müsste ich denn nun vorgehen????

habe wirklich keine ahnung..

Bezug
                
Bezug
metrische Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Sa 23.05.2009
Autor: Sachsen-Junge

das bsp. ist doch aber falsch....????

die mengen sind doch abgeschlossen..

Bezug
                        
Bezug
metrische Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 22:27 Sa 23.05.2009
Autor: Gonozal_IX

Hiho,

nein, (0,1] istg nicht abgeschlossen.

Ung genau die Abgeschlossenheit verwendest du in deinem Beweis ja noch nicht als Voraussetzung. Überlege dir, dass bei abgeschlossenen Mengen das Infimum auch angenommen wird!

MfG,
Gono.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]