matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis-Sonstigesmetrische Räume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Analysis-Sonstiges" - metrische Räume
metrische Räume < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

metrische Räume: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 09:01 Di 03.07.2007
Autor: tk80

Aufgabe
Es sei (X, d) ein metrischer Raum, A eine kompakte, B eine abgeschlossene Teilmenge von X. Zeigen Sie: Wenn es eine Folge [mm] (a_{n}) n\ge1 [/mm] in A und eine Folge [mm] (b_{n}) n\ge1 [/mm] in B gibt mit:
[mm] \limes_{n\rightarrow\infty} d(a_{n}, b_{n}) [/mm] =0

wie geht man hier vor?

        
Bezug
metrische Räume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:03 Di 03.07.2007
Autor: angela.h.b.


>  Zeigen Sie: Wenn es eine
> Folge [mm](a_{n}) n\ge1[/mm] in A und eine Folge [mm](b_{n}) n\ge1[/mm] in B
> gibt mit:
> [mm]\limes_{n\rightarrow\infty} d(a_{n}, b_{n})[/mm] =0

... DANN?

WIE heißt die Aufgabe?

Gruß v. Angela

Bezug
                
Bezug
metrische Räume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:11 Di 03.07.2007
Autor: tk80

oh, sorrry,

...dann gilt A [mm] \bigcap [/mm] B [mm] \not=\emptyset [/mm]

und danke für die tipps...!!

Bezug
        
Bezug
metrische Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 11:13 Di 03.07.2007
Autor: Sir_E

Hallo

Also A war ja kompakt und [mm] a_{n} [/mm] eine Folge in A. Wähle aus dieser Folge eine konvergente Teilfolge z.B. [mm] a_{n_{k}} [/mm] aus mit Grenzwert a, der natürlich in a liegt.

Nun gilt (mit der Dreiecksungleichung)

[mm] d(b_{n},a) \le d(b_{n},a_{n_{k}}) [/mm] + [mm] d(a_{n_{k}},a) [/mm]

Die Terme auf der rechten Seite kannst du aber nun bequem durch Epsilons abschätzen.

[mm] \limes_{k\rightarrow\infty} d(b_{n},a_{n_{k}}) [/mm]  = 0 nach Voraussetzung in der Aufgabe,

und den zweiten Term [mm] d(a_{n_{k}},a) [/mm] einfach durch Einsetzen der Grenzwertdefinition.

Daraus folgt, dass aber nun auch [mm] b_{n} [/mm] konvergiert und zwar gegen a. Wegen der Abgeschlossenheit von B liegt a in B.
Also liegt a in A und B und ist damit das gesuchte Element aus dem Durchschnitt


Bezug
                
Bezug
metrische Räume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:50 Mi 04.07.2007
Autor: tk80

Aufgabe
verstehe ich nicht, wie setzt man die grenzwertdefinition ein? und wie schätzt man am besten ab?

verstehe ich nicht, wie setzt man die grenzwertdefinition ein? und wie schätzt man am besten ab?

Bezug
                        
Bezug
metrische Räume: Antwort
Status: (Antwort) fertig Status 
Datum: 22:00 Mi 04.07.2007
Autor: leduart

Hallo
was heisst denn [mm] a_n [/mm] konvergiert gegen a? kannst du daraus ne Ungleichung mit nem Epsilon hinschreiben?
Dann tus!
Und lies doch bitte noch mal pkt 1 unserer Forenregeln.
Sir_ E hat die ne ausführliche Antwort geschickt, dafür kriegt er ohne sonst was ne Frage vor den Kopf geknallt! Wie lange hast du über die Antwort nachgedacht? länger als E zum Schreiben allein brauchte?
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]