matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-Sonstigesmetr. Raum vollständig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis-Sonstiges" - metr. Raum vollständig
metr. Raum vollständig < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

metr. Raum vollständig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:39 Do 21.05.2015
Autor: Katti1712

Aufgabe
Im Folgenden definieren wir jeweils eine Teilmenge [mm] X\subset\IR [/mm] und betrachten den metrischen Raum (X,d), wobei d von der üblichen euklidischen Metrik auf [mm] \IR [/mm] induziert wird. Entscheiden Sie jeweils mit Begründung, ob (X,d) vollständig ist.

a) [mm] X=\IZ [/mm]
b) [mm] X=\{\bruch{1}{n}:n\in\IN\} [/mm]
c) [mm] X=(-\infty,0]\cup\{\bruch{1}{n}:n\in\IN\} [/mm]
d) [mm] X=\IR-\IQ [/mm]

Hallo :)

Ich habe mal wieder ein Problem mit einer Aufgabe.. Leider weiß ich überhaupt nicht, wie man beweisen soll, dass (X,d) vollständig ist. Im Internet oder in meinen Büchern findet man dazu leider überhaupt nichts oder ich suche einfach falsch.
Es wäre sehr lieb, wenn mir jemand erklärt wie das funktioniert. Zu b) und c): Ich denke, dass das was mit der Cauchy-Folge zu tun hat, aber das bringt mich leider auch nicht wirklich weiter.

Lieben Gruß und vielen Dank im Voraus

Katrin  

        
Bezug
metr. Raum vollständig: Antwort
Status: (Antwort) fertig Status 
Datum: 05:43 Do 21.05.2015
Autor: fred97


> Im Folgenden definieren wir jeweils eine Teilmenge
> [mm]X\subset\IR[/mm] und betrachten den metrischen Raum (X,d), wobei
> d von der üblichen euklidischen Metrik auf [mm]\IR[/mm] induziert
> wird. Entscheiden Sie jeweils mit Begründung, ob (X,d)
> vollständig ist.
>  
> a) [mm]X=\IZ[/mm]
>  b) [mm]X=\{\bruch{1}{n}:n\in\IN\}[/mm]
>  c) [mm]X=(-\infty,0]\cup\{\bruch{1}{n}:n\in\IN\}[/mm]
>  d) [mm]X=\IR-\IQ[/mm]
>  Hallo :)
>  
> Ich habe mal wieder ein Problem mit einer Aufgabe.. Leider
> weiß ich überhaupt nicht, wie man beweisen soll, dass
> (X,d) vollständig ist.


.....  man könnte die Definition nehmen... ?


> Im Internet oder in meinen Büchern
> findet man dazu leider überhaupt nichts


Das glaube ich nicht.





> oder ich suche
> einfach falsch.


Das glaube ich schon eher.



>  Es wäre sehr lieb, wenn mir jemand erklärt wie das
> funktioniert. Zu b) und c): Ich denke, dass das was mit der
> Cauchy-Folge zu tun hat,



Mit welcher ? s gibt einige !




> aber das bringt mich leider auch
> nicht wirklich weiter.


Doch das täte es, wenn Du Dich um einige Defonitionen bemüht hättest.


>  
> Lieben Gruß und vielen Dank im Voraus
>  
> Katrin  


(X,d) ist vollständig, wenn folgendes gilt:  ist [mm] (x_n) [/mm] eine Caucyfolge in X, so gibt es ein x [mm] \in [/mm] X mit: [mm] (x_n) [/mm] konvergiert gegen x.


Zu a): sei [mm] (x_n) [/mm] eine Cauchyfolge in [mm] \IZ. [/mm] Zu [mm] \epsilon>0 [/mm] ex. also ein [mm] N=N(\epsilon) \in \IN [/mm] mit

   [mm] d(x_n,x_m) [/mm] < [mm] \epsilon [/mm]   für n,m>N.

Welche Eigenschaft hat nun [mm] (x_n), [/mm] wenn Du Dir vor Augen hältst, dass  [mm] \epsilon [/mm] <1 nicht verboten ist ?

Zeige damit: [mm] (x_n) [/mm] konvergiert in [mm] \IZ. \IZ [/mm] ist also vollständig.

Zu d):

Zeige:  [mm] (\bruch{\wurzel{2}}{n}) [/mm] ist eine Cauchyfolge in X, sie konvergiert aber nicht in X. X ist also nicht vollständig.



FRED

Bezug
                
Bezug
metr. Raum vollständig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:18 Do 21.05.2015
Autor: Katti1712

Hallo FRED,

danke für deine Hilfe!!
Also ich will dir jetzt mal meine Gedanken zu der Aufgabe schreiben:

Zur Aufgabe a):
Sei [mm] (x_n) [/mm] eine Cauchy-Folge in in [mm] \IZ [/mm]
[mm] \gdw \forall\varepsilon>0 \exists N\in\IN: \forall [/mm] m,n [mm] \ge [/mm] N: [mm] d(dx_m,x_n)<\varepsilon [/mm]

Insbesondere ist [mm] \varepsilon [/mm] beliebig, aber größer Null. Wähle [mm] 0<\varepsilon<1 [/mm]

[mm] \Rightarrow \exists N'\in\IN: \forall m,n\ge [/mm] N': [mm] d(x_m,x_n)<\varepsilon<1 [/mm]

Da [mm] x_m,x_n\in\IZ [/mm] ist [mm] d(x_m,x_n)\in\IZ [/mm]

[mm] \Rightarrow d(x_m,x_n)=0 \forall m,n\ge [/mm] N' mit d die euklidische Metrik

[mm] \Rightarrow \exists a\in\IZ, [/mm] sodass [mm] \forall m\ge [/mm] N' [mm] x_m=a [/mm]

[mm] \Rightarrow (x_n) [/mm] konvergiert gegen [mm] a\in\IZ [/mm]

Da [mm] (x_n) [/mm] beliebig:

[mm] \Rightarrow [/mm] jede Cauchy-Folge in [mm] \IZ [/mm] konvergiert gegen ein [mm] a\in\IZ [/mm]

[mm] \Rightarrow (\IZ,d) [/mm] ist vollständiger metrischer Raum


Zu Aufgabe b):

Also auf dem letzten Übungszettel habe ich schon mal bewiesen, dass [mm] \bruch{1}{n} [/mm] die Cauchy-Bedingung erfüllt und somit eine Cauchy-Folge ist.
Ich weiß nicht ob ich das jetzt explizit noch mal machen muss. Wäre nett von dir, wenn du mir deine Meinung dazu sagst.

[mm] \limes_{n\rightarrow\infty} \bruch{1}{n}\to [/mm] 0
0 liegt nicht in der Menge
[mm] \Rightarrow [/mm] der metrische Raum ist nicht vollständig.

Reicht der Beweis dann so?

Zu Aufgabe c):

Also im Aufgabenteil b) habe ich ja jetzt gezeigt, dass der rechte Teil [mm] (\{\bruch{1}{n}:n\in\IN\}) [/mm] nicht vollständig ist. Durch die Vereinigung von [mm] (-\infty,0] [/mm] liegt 0 in der Menge. Also konvergiert [mm] \bruch{1}{n} [/mm] gegen 0. Und da wie gesagt 0 in der Menge liegt, ist der rechte Teil der Vereinigung vollständig. Jetzt muss ich ja noch die negativen reellen Zahlen betrachten.
Leider weiß ich jetzt nicht weiter und wäre über einen weiteren Tipp dankbar. Meine Idee wäre es jetzt, dass der Beweis dazu so  aussieht, wie der Beweis, dass [mm] \IR [/mm] ein vollständiger metrischer Raum ist.

Zu Aufgabe d):

Zeige, dass [mm] \bruch{\wurzel{2}}{n} [/mm] die Cauchy-Bedingung erfüllt:

[mm] \forall \varepsilon\in\IR [/mm] mit [mm] \varepsilon>0 \exists N\in\IN: d(x_n,x_m)<\varepsilon \forall n,m\ge [/mm] N

Sei [mm] \varepsilon [/mm] fest

[mm] |x_n-x_m|=|\bruch{\wurzel{2}}{n}-\bruch{\wurzel{2}}{m}|<\varepsilon [/mm]
Dabei ist [mm] \bruch{\wurzel{2}}{n} [/mm] möglichst groß -> kleinstes n=N

Sei n>m

[mm] \bruch{\wurzel{2}}{n}-\bruch{\wurzel{2}}{m}\le\bruch{\wurzel{2}}{N}-\bruch{\wurzel{2}}{m}<\bruch{\wurzel{2}}{N}\le\varepsilon [/mm]

wobei [mm] \bruch{\wurzel{2}}{m}>0 [/mm]

[mm] \bruch{\wurzel{2}}{N}\le\epsilon \Rightarrow \bruch{\wurzel{2}}{\varepsilon}\le [/mm] N

[mm] \Rightarrow [/mm] Cauchy-Bedingung ist erfüllt

Aus dem Beweis folgt:

[mm] \Rightarrow \limes_{n\rightarrow\infty} \bruch{\wurzel{2}}{n} \to [/mm] 0

[mm] \Rightarrow [/mm] 0 liegt nicht in der Menge [mm] \IR-\IQ [/mm]
      [mm] \Rightarrow [/mm] (X,d) ist kein vollständiger metrischer Raum

Bezug
                        
Bezug
metr. Raum vollständig: Antwort
Status: (Antwort) fertig Status 
Datum: 22:46 Do 21.05.2015
Autor: Gonozal_IX

Hiho,

> Zur Aufgabe a):

[ok]

> Zu Aufgabe b):
> Ich weiß nicht ob ich das jetzt explizit noch mal machen muss.

Ein Verweis reicht meiner Meinung nach locker aus.

> [mm]\limes_{n\rightarrow\infty} \bruch{1}{n}\to[/mm] 0
>   0 liegt nicht in der Menge
> [mm]\Rightarrow[/mm] der metrische Raum ist nicht vollständig.

[ok]

> Zu Aufgabe c):
>  
> Also im Aufgabenteil b) habe ich ja jetzt gezeigt, dass der
> rechte Teil [mm](\{\bruch{1}{n}:n\in\IN\})[/mm] nicht vollständig
> ist. Durch die Vereinigung von [mm](-\infty,0][/mm] liegt 0 in der
> Menge. Also konvergiert [mm]\bruch{1}{n}[/mm] gegen 0. Und da wie
> gesagt 0 in der Menge liegt, ist der rechte Teil der
> Vereinigung vollständig. Jetzt muss ich ja noch die
> negativen reellen Zahlen betrachten.
> Leider weiß ich jetzt nicht weiter und wäre über einen
> weiteren Tipp dankbar. Meine Idee wäre es jetzt, dass der
> Beweis dazu so  aussieht, wie der Beweis, dass [mm]\IR[/mm] ein
> vollständiger metrischer Raum ist.

Ja das könnte man so machen, oder du nutzt, was du über abgeschlossene Teilmengen weißt und zeigst, dass die Menge abgeschlossen ist.

  

> Zu Aufgabe d):

Grundsätzlich ok, bis auf:

> Sei n>m

Hier meinst du sicher $m>n$.
Und: Du hast natürlich vergessen zu begründen, warum [mm] $\bruch{\sqrt{2}}{n}\in\IR\setminus\IQ$ [/mm] gilt.

Dann ein Tipp: Die Begründung der Cauchy-Folge geht auch einfacher:

[mm] $\left|\bruch{\sqrt{2}}{n} - \bruch{\sqrt{2}}{m}\right| [/mm] < [mm] \varepsilon \quad\gdw\quad \left|\bruch{1}{n} - \bruch{1}{m}\right| [/mm] < [mm] \bruch{\varepsilon}{\sqrt{2}} [/mm] =: [mm] \overline{\varepsilon}$ [/mm]

Zu zeigen ist also nur noch:
[mm] $\left|\bruch{1}{n} - \bruch{1}{m}\right| [/mm] < [mm] \overline{\varepsilon}$ [/mm]

Und das kommt dir doch sicherlich bekannt vor....

Gruß,
Gono

Bezug
                        
Bezug
metr. Raum vollständig: Antwort
Status: (Antwort) fertig Status 
Datum: 08:48 Fr 22.05.2015
Autor: fred97

Teil c) kannst Du so erledigen (das ist im Grunde das, was Gono vorgeschlagen hat):

Sei [mm] (x_n) [/mm] eine Cauchyfolge in X. Dann ist [mm] (x_n) [/mm] eine Cauchyfolge in [mm] \IR. [/mm] Also ex. ein x [mm] \in \IR [/mm] mit [mm] x_n \to [/mm] x.

Zu zeigen ist nun: x [mm] \in [/mm] X.

Fall 1: [mm] x_n \le [/mm] 0 für fast alle n. Dann ist auch x [mm] \le [/mm] 0 und somit x [mm] \in [/mm] X.

Fall 2: [mm] x_n [/mm] >0 für unendlich viele n. Somit ex. eine Teilfolge [mm] (u_k) [/mm] von [mm] (x_n) [/mm] mit

  [mm] u_k \in \{\bruch{1}{n}:n\in\IN\} [/mm] für alle k.

Damit ist [mm] (u_k) [/mm] eine Umordnung einer Teilfolge von [mm] (\bruch{1}{n}). [/mm] Es folgt: [mm] (u_k) [/mm] ist eine Nullfolge.

Es gilt aber auch: [mm] u_k \to [/mm] x. Somit ist x=0 [mm] \in [/mm] X.

FRED

Bezug
        
Bezug
metr. Raum vollständig: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Fr 22.05.2015
Autor: fred97

Allgemein gilt:

ist (Y,d) ein vollständiger metrischer Raum und X eine nichtleere Teilmenge von Y, so gilt:

   [mm] (X,d_{| X}) [/mm] ist vollständig  [mm] \gdw [/mm] X ist eine abgeschlossene Teilmenge von Y.

Beweis ?

Zur Aufgabe:

in a) ist X abgeschlossen.

in b) ist 0 ein Häufungspunkt von X, aber 0 [mm] \notin [/mm] X. X ist also nicht abgeschlossen.

in c) ist X abgeschlossen.

in d) ist X nicht abgeschlossen, denn [mm] \overline{X}= \IR \ne [/mm] X.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]