matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe Analysismeromorphe Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Komplexe Analysis" - meromorphe Funktionen
meromorphe Funktionen < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

meromorphe Funktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 17:15 Mo 05.01.2009
Autor: grenife

Aufgabe
Untersuchen Sie, welche der folgenden Funktionen meromorph in [mm] \mathbb{C} [/mm] sind.

(a) [mm] f(z):=\exp (\exp [/mm] z)
(b) [mm] f(z):=\exp \left(\frac{1}{z^2-1}\right) [/mm]
(c) [mm] f(z):=\frac{1}{1-\cos z} [/mm]
(d) [mm] f(z):=\cot \frac{1}{z} [/mm]

Hallo zusammen,

wie kann man denn bei der Überprüfung der Meromorphie am besten vorgehen? Ich hätte jetzt zunächst die Holomorphie überprüft (dann ist die ein oder andere Funktion bereits erledigt). Könnte ich dann so vorgehen, dass ich mir nur die Punkte anschaue, in denen eine Funktion nicht holomorph ist?

Vielen Dank und viele Grüße
Gregor

        
Bezug
meromorphe Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:44 Mo 05.01.2009
Autor: rainerS

Hallo Gregor!

> Untersuchen Sie, welche der folgenden Funktionen meromorph
> in [mm]\mathbb{C}[/mm] sind.
>  
> (a) [mm]f(z):=\exp (\exp[/mm] z)
>  (b) [mm]f(z):=\exp \left(\frac{1}{z^2-1}\right)[/mm]
>  (c)
> [mm]f(z):=\frac{1}{1-\cos z}[/mm]
>  (d) [mm]f(z):=\cot \frac{1}{z}[/mm]
>  Hallo
> zusammen,
>  
> wie kann man denn bei der Überprüfung der Meromorphie am
> besten vorgehen? Ich hätte jetzt zunächst die Holomorphie
> überprüft (dann ist die ein oder andere Funktion bereits
> erledigt). Könnte ich dann so vorgehen, dass ich mir nur
> die Punkte anschaue, in denen eine Funktion nicht holomorph
> ist?

Ja. Das ist die Definition einer meromorphen Funktion: sie nur in isolierten Punkten nicht holomorph und besitzt dort höchstens Pole.

Was hast du denn bisher heraus?

Viele Grüße
   Rainer

Bezug
                
Bezug
meromorphe Funktionen: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:32 Sa 10.01.2009
Autor: grenife

Hallo Rainer,

zu a) die Exponentialfunktion ist auf ganz [mm] $\mathbb{C}$ [/mm] holomorph und nimmt jeden Wert von [mm] $\mathbb{C}\setminus \left\{0\right\}$ [/mm] gleich oft an. Dann müsste doch [mm] $\exp (\exp [/mm] z)$ ebenfalls auf ganz [mm] $\mathbb{C}$ [/mm] holomorph und somit meromorph sein, oder?

zu b) Die Funktion ist holomorph auf [mm] $\mathbb{C}\setminus \left\{1;-1;i;-i\right\}$. [/mm] In diesen Punkten müsste ich jetzt als nächstes überprüfen, ob es sich um Pole handelt oder nicht.

zu c) Die Kosinusfunktion ist ganz, [mm] $1-\cos [/mm] z$ ist demnach auf ganz [mm] $\mathbb{C}$ [/mm] holomorph. Als mögliche Polstellen kommen die Zahlen [mm] $2k\cdot \pi$, $k\in\mathbb{Z}$ [/mm] in Frage.

zu d) es gilt [mm] $\cot z=\frac{\cos z}{\sin z}$. [/mm] Die Funktion ist auf [mm] $\mathbb{C}\setminus\left\{k\pi|k\in\mathbb{Z}\right\}$ [/mm] holomorph und auf [mm] $\mathbb{C}$ [/mm] meromorph. Als mögliche Polstelle bleibt somit nur der Punkt $0$ übrig.

Ist das soweit richtig?

Viele Grüße
Gregor

> Hallo Gregor!
>  
> > Untersuchen Sie, welche der folgenden Funktionen meromorph
> > in [mm]\mathbb{C}[/mm] sind.
>  >  
> > (a) [mm]f(z):=\exp (\exp[/mm] z)
>  >  (b) [mm]f(z):=\exp \left(\frac{1}{z^2-1}\right)[/mm]
>  >  (c)
> > [mm]f(z):=\frac{1}{1-\cos z}[/mm]
>  >  (d) [mm]f(z):=\cot \frac{1}{z}[/mm]
>  
> >  Hallo

> > zusammen,
>  >  
> > wie kann man denn bei der Überprüfung der Meromorphie am
> > besten vorgehen? Ich hätte jetzt zunächst die Holomorphie
> > überprüft (dann ist die ein oder andere Funktion bereits
> > erledigt). Könnte ich dann so vorgehen, dass ich mir nur
> > die Punkte anschaue, in denen eine Funktion nicht holomorph
> > ist?
>  
> Ja. Das ist die Definition einer meromorphen Funktion: sie
> nur in isolierten Punkten nicht holomorph und besitzt dort
> höchstens Pole.
>  
> Was hast du denn bisher heraus?
>  
> Viele Grüße
>     Rainer


Bezug
                        
Bezug
meromorphe Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:32 Sa 10.01.2009
Autor: rainerS

Hallo Gregor!

> zu a) die Exponentialfunktion ist auf ganz [mm]\mathbb{C}[/mm]
> holomorph und nimmt jeden Wert von [mm]\mathbb{C}\setminus \left\{0\right\}[/mm]
> gleich oft an. Dann müsste doch [mm]\exp (\exp z)[/mm] ebenfalls auf
> ganz [mm]\mathbb{C}[/mm] holomorph und somit meromorph sein, oder?

[ok]

>  
> zu b) Die Funktion ist holomorph auf [mm]\mathbb{C}\setminus \left\{1;-1;i;-i\right\}[/mm].

Sogar holomorph auf [mm]\mathbb{C}\setminus \left\{1;-1\right\}[/mm]. Wieso meinst du, dass sie in den Punkten [mm] $\pm [/mm] i$ nicht holomorph sei?

> In diesen Punkten müsste ich jetzt als nächstes überprüfen,
> ob es sich um Pole handelt oder nicht.

Richtig. Tipp: durch Partialbruchzerlegung und Anwendung von [mm] $\exp(x+y)= \exp(x)\exp(y)$ [/mm] kommst du auf Funktionen der Form

[mm] \exp\left(\bruch{1}{z-z_0}\right) [/mm]

Dafür benutzt du die Reihenentwicklung der Exponentialfunktion und bekommst sofort die Laurententwicklung.

> zu c) Die Kosinusfunktion ist ganz, [mm]1-\cos z[/mm] ist demnach
> auf ganz [mm]\mathbb{C}[/mm] holomorph. Als mögliche Polstellen
> kommen die Zahlen [mm]2k\cdot \pi[/mm], [mm]k\in\mathbb{Z}[/mm] in Frage.

Korrekt. Woher weisst du, das es keine wesentlichen Singularitäten sind?

> zu d) es gilt [mm]\cot z=\frac{\cos z}{\sin z}[/mm]. Die Funktion
> ist auf
> [mm]\mathbb{C}\setminus\left\{k\pi|k\in\mathbb{Z}\right\}[/mm]
> holomorph und auf [mm]\mathbb{C}[/mm] meromorph. Als mögliche
> Polstelle bleibt somit nur der Punkt [mm]0[/mm] übrig.

Was ist mit den anderen Punkten, in denen sie nicht holomorph ist?

Viele Grüße
    Rainer
  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]