matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysismengen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Analysis" - mengen
mengen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mengen: erklärung
Status: (Frage) beantwortet Status 
Datum: 10:33 Fr 04.11.2005
Autor: michelangelo

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

Hallo, kann mir jemand bei der Erläuterung von Häufungspunkten behilflich sein?
M ist Teilmenge von X und x0 ist Häufungspunkt von M wenn in jeder Kugel von x0 ein Punkt x1 leigt der ungleich x0 ist.

Beim Intervall [0,3] sind da alle Elemte des Intervalls Häufungspunkte?

Warum ist bei der Menge {1, 1/2, 1/3,...} 0 ein Häufungspunkt?

        
Bezug
mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:48 Fr 04.11.2005
Autor: holy_diver_80

Hallo michelangelo,

Ich werde das zweite Beispiel ausführlich erläutern. Du solltest dann auch mit dem Intervall [0,3] keine Probleme haben.

Wenn Du Dir die Zahlen auf der Zahlengeraden markierst, wirst Du vermutlich auch schon klarer sehen. In der Umgebung von 0 häufen sich die Punkte.

Formal zeigt man das so:

Sei [mm] $\varepsilon [/mm] > 0$. Betrachte [mm] $B_\varepsilon(0)$ [/mm] (Die Kugel mit Radius [mm] $\varepsilon$ [/mm] um 0.) Da [mm] $\IR$ [/mm] archimedisch ist, gibt es ein $m [mm] \in \IN$ [/mm] so, dass [mm] $m*\varepsilon [/mm] > 1$.
Also: [mm] $\bruch{1}{m} [/mm] < [mm] \varepsilon$ [/mm]
D.h.: 1/m ist in dieser Kugel enthalten. Da [mm] $\varepsilon$ [/mm] beliebig, ist in jeder Kugel um 0 ein 1/m enthalten, und 0 ein Häufungspunkt dieser Menge.

Liebe Grüße,
Holy Diver

Bezug
                
Bezug
mengen: rückfrage
Status: (Frage) beantwortet Status 
Datum: 11:59 Fr 04.11.2005
Autor: michelangelo

Danke erstmal. Heisst das dann auch, dass 1 ein Häufungspunkt wäre, da auch in jeder Kugel um 1 ein 1/m enthalten wäre?

Genauso bei dem Intervall [0,3] wäre dort jeder Punkt ein Häufungspunkt? denn ich kann ja eine Umgebung um jeden Punkt definieren und würde dann einen beliebigen weiteren Punkt in dieser Umgebung finden. Das heißt wenn ich mich im Bereich der natürlichen Zahlen befinde wäre 0 und 3 kein Häufungspunkt mehr oder?!

Bezug
                        
Bezug
mengen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:21 Fr 04.11.2005
Autor: holy_diver_80


> Danke erstmal. Heisst das dann auch, dass 1 ein
> Häufungspunkt wäre, da auch in jeder Kugel um 1 ein 1/m
> enthalten wäre?

Nein, 1 ist kein Häufunsgspunkt. Sei [mm] $\varepsilon [/mm] < 1/2$. Dann enthält [mm] $B_\varepsilon [/mm] (1)$ keine weiteren Elemente dieser Menge. Wäre 1 ein Häufungspunkt, so müsste das aber der Fall sein. Ebenso ist kein 1/n ein Häufungspunkt der Menge, was man leicht erkennt, wenn man die Radien der Kugeln kleiner als 1/(n+1) macht.

> Genauso bei dem Intervall [0,3] wäre dort jeder Punkt ein
> Häufungspunkt? denn ich kann ja eine Umgebung um jeden
> Punkt definieren und würde dann einen beliebigen weiteren
> Punkt in dieser Umgebung finden. Das heißt wenn ich mich im
> Bereich der natürlichen Zahlen befinde wäre 0 und 3 kein
> Häufungspunkt mehr oder?!

Wenn $[0,3] [mm] \subseteq \IR$, [/mm] dann ist jeder Punkt im Intervall ein Häufungspunkt. Denn:
Sei x ein beliebiger Punkt im Intervall. Sei [mm] $\varepsilon [/mm] >0$ beliebig. Dann ist [mm] $B_\varepsilon [/mm] (x)$ = [mm] $]x-\varepsilon [/mm] , [mm] x+\varepsilon[$ [/mm] Der Schnitt dieser beiden Intervalle enthält IMMER von x verschiedene Elemente. Da [mm] $\varepsilon$ [/mm] beliebig, ist x Häufungspunkt.
Also ist jedes $x [mm] \in [/mm] [0,3]$ Häufungspunkt des Intervalls.

Liebe Grüße,
Holy Diver

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]