matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenmehrere Variablen im Beweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - mehrere Variablen im Beweis
mehrere Variablen im Beweis < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mehrere Variablen im Beweis: Zwei Teilaufgaben
Status: (Frage) beantwortet Status 
Datum: 00:17 So 11.11.2007
Autor: Physiker

Aufgabe
i) Zeigen sie für zwei positive reelle Zahlen a und b:

[mm] \bruch {2}{\bruch{1}{a} + \bruch{1}{b}} \le \sqrt{a*b} [/mm]

ii) Zeigen sie für drei positive reelle Zahlen a, b und [mm] \varepsilon: [/mm]

[mm]a*b[/mm][mm] \le \varepsilon a^2 [/mm] + [mm] \bruch{b^2}{4\varepsilon} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Auch hier bräuchte ich einen Ansatz... habe leider gaaaar keine Ahnung. Geht das?

        
Bezug
mehrere Variablen im Beweis: Genaue Aussagen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:36 So 11.11.2007
Autor: M.Rex

Hallo und [willkommenmr]

Nutz doch mal bitte den Formeleditor und ändere deine Aussagen so,dass sie eindeutig sind.

In Teil 1 fehlt die komplette rechte Seite der Ungleichung, und auf der linken Seite weiss ich leider nicht ganz, was gemeint ist.

Und die Aussage brauchst du nachher für Teil 2.

Marius

Bezug
                
Bezug
mehrere Variablen im Beweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:02 So 11.11.2007
Autor: Physiker

Okay... *such* Formeleditor... Bin gleich wieder da und danke für das herzliche Willkommen.

Bezug
        
Bezug
mehrere Variablen im Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 01:11 So 11.11.2007
Autor: Martin243

Hallo,

zu 1.:
Es ist zwar nicht notwendig, aber vielleicht hilfreich (man sieht es leichter), wenn du mal [mm] a=:A^2 [/mm] und [mm] b=:B^2 [/mm] substituierst. Dann bildest du auf beiden Seiten den Kehrwert (Ungleichheit dreht sich auch um!) und versuchst auf die 2. Binomische Formel zu kommen. Ist nicht schwer.

zu 2.:
Hier kannst du es mit [mm] $\bruch{b}{2\varepsilon}=:c$ [/mm] versuchen. Dann geht es ganz schnell.


Gruß
Martin

Bezug
                
Bezug
mehrere Variablen im Beweis: Frage auf Antwort
Status: (Frage) beantwortet Status 
Datum: 13:47 So 11.11.2007
Autor: Physiker

Aufgabe 1
wenn $c:= [mm] \bruch{b}{2\varepsilon}$ [/mm] dann hätte ich ja $ a*b [mm] \le \varepsilon*a^2 [/mm] + [mm] c^2$ [/mm]

Aufgabe 2
zu ii)

müsste ich, wenn ich  [mm] $\bruch{b^2}{4\varepsilon}$ [/mm] mit [mm] $c^2$ [/mm] substituiere nicht [mm] $c:=\bruch{b}{4\varepsilon}$ [/mm] sein? Dann kann ich das ganze so schreiben:

$a*b [mm] \le \varepsilon*a^2 [/mm] + [mm] c^2$ [/mm] weil [mm] $c^2 [/mm] = [mm] \bruch{b^2}{4\varepsilon}$. [/mm]


Aber wo stecke ich denn nun den Beweis hin?


Bezug
                        
Bezug
mehrere Variablen im Beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 14:24 So 11.11.2007
Autor: Martin243

Hallo,

> wenn $c:= [mm] \bruch{b}{2\varepsilon}$ [/mm] dann hätte ich ja $ a*b [mm] \le \varepsilon*a^2 [/mm] + [mm] c^2$ [/mm]

Falsch! Das entspricht nicht der von mir vorgeschlagenen Substitution!


> müsste ich, wenn ich  [mm] $\bruch{b^2}{4\varepsilon}$ [/mm] mit [mm] $c^2$ [/mm] substituiere nicht [mm] $c:=\bruch{b}{4\varepsilon}$ [/mm] sein?

Diese Substitution habe ich nie vorgeshlagen!
Meines Wissens ist [mm] $\left(\bruch{b}{2\varepsilon}\right)^2=\bruch{b^2}{2^2\varepsilon^2}=\bruch{b^2}{4\varepsilon^2}$. [/mm]

Mein Tipp: Teile zuerst die gesamte Ungleichung durch [mm] $\varepsilon$, [/mm] dann wird vielleicht klarer, was alles substitutiert werden kann.


Gruß
Martin

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]