matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenTrigonometrische Funktionenmehrere Lösungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Trigonometrische Funktionen" - mehrere Lösungen
mehrere Lösungen < Trigonometr. Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mehrere Lösungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:13 Mi 20.01.2016
Autor: Valkyrion

Aufgabe
Ein Staubecken wird zur Zeit der Schneeschmelze gefüllt. Da die Schneeschmelze temperaturabhängig ist, kann die momentane Zuflussrate des Wassers durch die Funktion w mit
w(t) = [mm] 50*sin(\bruch{\pi}{12}*t)+60; 0\le [/mm] t [mm] \le [/mm] 24
beschrieben werden (t in Stunden, w(t) in m³/h).

In welchem Zeitraum ist die momentane Zuflussrate größer als 100 m³/h?

Mit dem GTR bekomme ich dabei zwei Lösungen ( t= 3,54 & t=8,46)
Wenn ich das von Hand ausrechne bekomme ich nur eine Lösung (t=3,54).
w(t)> 100;
[mm] 50*sin(\bruch{\pi}{12}*t)+60 [/mm] = 100;
[mm] sin(\bruch{\pi}{12}*t) [/mm] = [mm] \bruch{4}{5}; [/mm]
[mm] \bruch{\pi}{12}*t [/mm] = [mm] arcsin(\bruch{4}{5}); [/mm]
[mm] \bruch{\pi}{12}*t [/mm] = 0,927;
t=3,54;

Wie komme ich (ohne GTR) an die zweite Lösung?

        
Bezug
mehrere Lösungen: Antwort
Status: (Antwort) fertig Status 
Datum: 11:31 Mi 20.01.2016
Autor: M.Rex

Hallo


> Ein Staubecken wird zur Zeit der Schneeschmelze gefüllt.
> Da die Schneeschmelze temperaturabhängig ist, kann die
> momentane Zuflussrate des Wassers durch die Funktion w mit
> w(t) = [mm]50*sin(\bruch{\pi}{12}*t)+60; 0\le[/mm] t [mm]\le[/mm] 24
> beschrieben werden (t in Stunden, w(t) in m³/h).

>

> In welchem Zeitraum ist die momentane Zuflussrate größer
> als 100 m³/h?
> Mit dem GTR bekomme ich dabei zwei Lösungen ( t= 3,54 &
> t=8,46)
> Wenn ich das von Hand ausrechne bekomme ich nur eine
> Lösung (t=3,54).
> w(t)> 100;
> [mm]50*sin(\bruch{\pi}{12}*t)+60[/mm] = 100;
> [mm]sin(\bruch{\pi}{12}*t)[/mm] = [mm]\bruch{4}{5};[/mm]
> [mm]\bruch{\pi}{12}*t[/mm] = [mm]arcsin(\bruch{4}{5});[/mm]
> [mm]\bruch{\pi}{12}*t[/mm] = 0,927;
> t=3,54;

>

> Wie komme ich (ohne GTR) an die zweite Lösung?

Du musst zwei Sachen beachten, einerseits die [mm] 2$\pi$-Periodizität [/mm] des Sinus und andererseits die Tatsache, dass [mm] \sin(x)=\sin(\pi-x) [/mm]

Also folgt nach der Anwendung des Arkussinus auf die Gleichung [mm] \sin\left(\frac{\pi}{12}\cdot t\right)=\frac{4}{5} [/mm] folgende Gleichungen:

[mm] \frac{\pi}{12}\cdot t=\arcsin\left(\frac{4}{5}\right) [/mm]
und
[mm] \pi-\frac{\pi}{12}\cdot t=\arcsin\left(\frac{4}{5}\right) [/mm]

Daraus folgen dann die beiden Lösungen 3,54 und 8,46

Nun beachte noch die [mm] 2$\pi$-Periodizität, [/mm] alle Lösungen der Gleichung wären also:
[mm] 3,54+2k\pi [/mm] und [mm] 8,46+2k\pi [/mm] dabei ist [mm] k\in\IZ [/mm]

Marius

Bezug
                
Bezug
mehrere Lösungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:32 Mi 20.01.2016
Autor: Valkyrion

erst mal Danke für die Antwort, hat mir auch schon weitergeholfen.
Die beiden Lösungen sollen aber die einzigen sein, Wenn ich mir jetzt mal die beiden Seiten der Ausgangsgleichung als Funktionen anzeigen lasse, macht es auch Sinn, dass es nur zwei Lösungen sind.
Wieso ist dann 3,54 [mm] +2\pi [/mm] (k=1) = 9,82 auch eine Lösung?

Bezug
                        
Bezug
mehrere Lösungen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:44 Mi 20.01.2016
Autor: M.Rex

Hallo

> erst mal Danke für die Antwort, hat mir auch schon
> weitergeholfen.
> Die beiden Lösungen sollen aber die einzigen sein, Wenn
> ich mir jetzt mal die beiden Seiten der Ausgangsgleichung
> als Funktionen anzeigen lasse, macht es auch Sinn, dass es
> nur zwei Lösungen sind.
> Wieso ist dann 3,54 [mm]+2\pi[/mm] (k=1) = 9,82 auch eine Lösung?

Weil ich mich da leider vertan habe. Die Periodenlänge dieser Funktion ist hier nicht [mm] 2$\pi$, [/mm] wie bei der "Standard-Sinusfunktion", sondern 24, denn du hast ja noch den Vorfaktor [mm] \frac{\pi}{12} [/mm] vor dem t.

Damit bekommst du dann natürlich keine weiteren Lösungen im Intervall von 0 bis 24.

Falls du dir die Bedeutung der Parameter der Sinusfunktion nochmal genauer anschauen willst, kann ich []die Zusammenfassung bei mathenexus nur empfehlen.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Trigonometrische Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]