matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer Veränderlichenmehrdimensionale integration
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Reelle Analysis mehrerer Veränderlichen" - mehrdimensionale integration
mehrdimensionale integration < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

mehrdimensionale integration: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:42 Mi 30.03.2011
Autor: meep

Aufgabe
Man berechne das Integral

[mm] \integral_{M}{z^2*\wurzel{x^2+y^2} d(x,y,z)} [/mm]

wobei M [mm] \subset \IR^3 [/mm] durch folgende Ungleichungen bestimmt ist

[mm] x^2+y^2+z^2 \le [/mm] 4 und [mm] z^2 \le x^2+y^2 [/mm]

hi zusammen,

ich hab mich mal an die Aufgabe rangemacht und wollte eigentlich nur schnell wissen, ob mein Integral richtig aufgestellt ist:

Ich habe Kugelkoordinaten gewählt mit

x=r cos [mm] \theta [/mm] cos [mm] \phi [/mm]

y = r cos [mm] \theta [/mm] sin [mm] \phi [/mm]

z = r sin [mm] \theta [/mm]

nun habe ich das in die Ungleichungen eingesetzt und folgendes erhalten

[mm] r^2 \le [/mm] 4 und somit also r [mm] \le [/mm] 2

und bei der anderen Gleichung auch eingesetzt und folgendes erhalten

[mm] r^2 sin^2 \theta \le r^2 cos^2 \theta [/mm]

das weiter umgeformt zu

[mm] tan^2 \theta \le [/mm] 1

und damit dann

[mm] \bruch{-\pi}{4} \le \theta \le \bruch{\pi}{4} [/mm]

und dann habe ich mein Integral aufgestellt.


[mm] \integral_{\bruch{-\pi}{4}}^{\bruch{\pi}{4}} \integral_{0}^{2 \pi} \integral_{0}^{2}{r^5 sin^2 \theta cos^2 \theta d(r, \phi , \theta)} [/mm]

ist das so korrekt ? vor allem die integrationsgrenzen sind mir wichtig. wäre nett wenn einer drüberschaut und mir bescheid gibt obs stimmt oder nicht.

lg

meep

        
Bezug
mehrdimensionale integration: Antwort
Status: (Antwort) fertig Status 
Datum: 21:16 Mi 30.03.2011
Autor: MathePower

Hallo meep,

> Man berechne das Integral
>  
> [mm]\integral_{M}{z^2*\wurzel{x^2+y^2} d(x,y,z)}[/mm]
>  
> wobei M [mm]\subset \IR^3[/mm] durch folgende Ungleichungen bestimmt
> ist
>  
> [mm]x^2+y^2+z^2 \le[/mm] 4 und [mm]z^2 \le x^2+y^2[/mm]
>  hi zusammen,
>  
> ich hab mich mal an die Aufgabe rangemacht und wollte
> eigentlich nur schnell wissen, ob mein Integral richtig
> aufgestellt ist:
>  
> Ich habe Kugelkoordinaten gewählt mit
>  
> x=r cos [mm]\theta[/mm] cos [mm]\phi[/mm]
>  
> y = r cos [mm]\theta[/mm] sin [mm]\phi[/mm]
>  
> z = r sin [mm]\theta[/mm]
>  
> nun habe ich das in die Ungleichungen eingesetzt und
> folgendes erhalten
>  
> [mm]r^2 \le[/mm] 4 und somit also r [mm]\le[/mm] 2
>  
> und bei der anderen Gleichung auch eingesetzt und folgendes
> erhalten
>  
> [mm]r^2 sin^2 \theta \le r^2 cos^2 \theta[/mm]
>
> das weiter umgeformt zu
>  
> [mm]tan^2 \theta \le[/mm] 1
>  
> und damit dann
>  
> [mm]\bruch{-\pi}{4} \le \theta \le \bruch{\pi}{4}[/mm]
>  
> und dann habe ich mein Integral aufgestellt.
>  
>
> [mm]\integral_{\bruch{-\pi}{4}}^{\bruch{\pi}{4}} \integral_{0}^{2 \pi} \integral_{0}^{2}{r^5 sin^2 \theta cos^2 \theta d(r, \phi , \theta)}[/mm]
>  
> ist das so korrekt ? vor allem die integrationsgrenzen sind
> mir wichtig. wäre nett wenn einer drüberschaut und mir
> bescheid gibt obs stimmt oder nicht.


Alles korrekt. [ok]


>  
> lg
>  
> meep


Gruss
MathePower

Bezug
                
Bezug
mehrdimensionale integration: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:43 Mi 30.03.2011
Autor: meep

alles klar, wie immer vielen dank mathepower :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]