matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebramaximales Ideal
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - maximales Ideal
maximales Ideal < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

maximales Ideal: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:59 So 03.10.2010
Autor: T_sleeper

Aufgabe
Sei R ein kommutativer Ring mit 1. Sei [mm] a\in [/mm] R. Zeigen Sie, dass a genau dann in jedem maximalen Ideal enthalten ist, wenn 1-ax für jedes [mm] x\in [/mm] R invertierbar ist.

Hallo,

ich sehe hier wirklich gar nichts. Man soll für den Beweis verwenden, dass jedes Ideal in einem maximalen Ideal enthalten ist. Ich weiß aber nicht mal, wo ich das einbringen soll.

Ist 1-ax für jedes [mm] x\in [/mm] R invertierbar, dann gibt es ein [mm] b\in [/mm] R: b(1-ax)=1. Was ich jetzt allerdings mit dem b weiter machen kann, weiß ich nicht, schließlich ist das eine Einheit, also mit Idealen siehts dann schlecht aus.

Wenn 1-ax eine Einheit ist, dann ist das in keinem maximalen Ideal enthalten.

Ich sehe es leider wirklich nicht, auch nicht, wie ich anfangen soll.

Grüße

        
Bezug
maximales Ideal: Antwort
Status: (Antwort) fertig Status 
Datum: 00:27 Mo 04.10.2010
Autor: felixf

Moin!

> Sei R ein kommutativer Ring mit 1. Sei [mm]a\in[/mm] R. Zeigen Sie,
> dass a genau dann in jedem maximalen Ideal enthalten ist,
> wenn 1-ax für jedes [mm]x\in[/mm] R invertierbar ist.
>  Hallo,
>  
> ich sehe hier wirklich gar nichts. Man soll für den Beweis
> verwenden, dass jedes Ideal in einem maximalen Ideal
> enthalten ist. Ich weiß aber nicht mal, wo ich das
> einbringen soll.
>
> Ist 1-ax für jedes [mm]x\in[/mm] R invertierbar, dann gibt es ein
> [mm]b\in[/mm] R: b(1-ax)=1. Was ich jetzt allerdings mit dem b
> weiter machen kann, weiß ich nicht, schließlich ist das
> eine Einheit, also mit Idealen siehts dann schlecht aus.
>  
> Wenn 1-ax eine Einheit ist, dann ist das in keinem
> maximalen Ideal enthalten.

Genau.

Sei $M$ ein maximales Ideal und angenommen, $1 - a x$ ist fuer jedes $a [mm] \in [/mm] R$ invertierbar. Schau dir jetzt die kanonische Projektion [mm] $\pi [/mm] : R [mm] \to [/mm] R/M =: K$ an. Dies ist ein Ringhomomorphismus.

In $K$ ist also $1 - b [mm] \pi(x)$ [/mm] fuer jedes $b [mm] \in [/mm] K$ invertierbar. (Da [mm] $\pi$ [/mm] surjektiv ist.) Das kann aber nur sein, wenn [mm] $\pi(x) [/mm] = 0$ ist (warum?). Daraus folgt, dass $x [mm] \in [/mm] M$ liegt (warum?).



Nun zur anderen Richtung. Sei $x$ in jedem maximalen Ideal enthalten, und sei $a [mm] \in [/mm] R$. Dann ist auch $a x$ in jedem maximalen Ideal enthalten. Du musst jetzt daraus folgern, dass $1 - a x$ invertierbar ist. Waere es das nicht, so waer $(1 - a x)$ ein echtes Ideal, womit es ein maximales Ideal $M$ gibt mit $(1 - a x) [mm] \subseteq [/mm] M$. Fuehre das jetzt zu einem Widerspruch (dazu, dass $a x [mm] \in [/mm] M$ ist).

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]