maximale Fläche bei Integral < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Hey Leute
hab mal wieder einkleines Problem mit ner Teilaufgabe
Also:
Habe ne parabel mit der Gleichung [mm] P:y^2=-0.5*\wurzel{7}*(x-\wurzel{7}-\bruch{2.25}{0.5*\wurzel{7}})
[/mm]
Aufgabe:
Betrachtet sei nun eine Ursprungsgerade g, die im 1. und 3. Quadranten verläuft und ihr Schnittpunkt [mm] S(x_s;y_s) [/mm] mit der Parabel P im 1. Quadranten. Eine quadratische Pyramide sei nun so gedacht, dass ihre Spitze im Ursprung liegt, die mitte einer ihrer Grundseiten der Punkt S ist un der Diagonalen Schnittpunkt M inihrer Grundfläche auf der x-Achse liegt. Zeigen sie, wie die Steigung der Geraden g so besimmt werden kann, dass das Volumen der Pyramide maximalwird!
Mein Ansatz:
Ich betrachte also das Dreieck AMS mit A(0;0) , [mm] M(x_s;0) [/mm] und [mm] S(x_s;y_s)
[/mm]
Wenn das Volumen dieses einen Dreiecks max. wurd, dann wird doch auch das Volumen der gesamten Pyramide max. oder?
Also muss das Integral [mm] \integral_{0}^{x_s} [/mm] {g(x) dx} maximal sein und ich suche das [mm] x_s [/mm] (welches natürlich auch auf der Parabel liegt) für welches dieses integral max. wird. Daraus kann ich dann ja ganz einfach die Steigung berechnen.
Das [mm] \integral_{0}^{x_s} [/mm] {g(x)} dx ist gleich F(x). F(x) ist maximal wenn die ableitung f(x)=0 ist oder? also müsste ich doch meine geraden gleichung [mm] y=\bruch{y_s}{x_s}*x [/mm] nullsetzen um meine Integralgrenze zu bekommen,aber da kommt dann ja null raus und das kann ja irgendwie nit sein, oder??
oder (is mir gerade eingefallen) kann ich einfach den Flächeninhalt des Dreiecks A(x)= [mm] \bruch{x_s*y_s}{2} [/mm] nehmen und davon max. ausrechnen, also [mm] \bruch{\wurzel{-0.5*\wurzel{7}*(x_s-\wurzel{7}-\bruch{2.25}{0.5*\wurzel{7}})}*x_s}{2} [/mm] =A(x) ableiten und dann nach [mm] x_s [/mm] auflösen??
Wär nett wenn sich jemand die zeit nimmt um mir zu helfen!
Gruß
Christina
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:54 So 24.04.2005 | Autor: | Max |
Hallo Christina,
leider wir die Pyramide nicht maximal, wenn das Dreieck maximal wird, da [mm] $A=\frac{1}{2}\cdot g\cdot [/mm] h$ und [mm] $V=\frac{1}{3} \cdot [/mm] h [mm] \cdot [/mm] G$ mit [mm] $G=2g^2$. [/mm] Damit ist es für $A$ egal, ob $g$ oder $h$ größer wird - für $V$ ist es wichtiger, dass $g$ größer wird als $h$, da $g$ quadratisch eingeht.
Gruß Max
|
|
|
|
|
Danke macht sinn,
Also muss ich jetzt die Ableitung von [mm] V(x_s)=\bruch{1}{3}*x_s*(2*y_s)^2 [/mm] bilden, diese dann gleich null setzen und nach [mm] x_s [/mm] auflösen und erhalte dann das [mm] x_s [/mm] für welches mein Pyramidenvolumen max wird, richtig? dann rechne ich das zugehörige [mm] y_s [/mm] aus und berechne die Steigung der Geraden mit [mm] m=\bruch{y_s}{x_s} [/mm] richtig?
Danke für die Hilfe!!
Gruß
Christina
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:22 So 24.04.2005 | Autor: | Max |
Ja, so müsste es richtig sein. Max
|
|
|
|