matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExtremwertproblememax. Volumen, Blechtonne
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Extremwertprobleme" - max. Volumen, Blechtonne
max. Volumen, Blechtonne < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

max. Volumen, Blechtonne: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:46 Mi 19.03.2008
Autor: itse

Aufgabe
Welches Volumen kann eine oben offene zylinderformige Blechtonne höchstens haben, wenn zu ihrer Herstellung genau 3m² Blech verbraucht werden?

Hallo Zusammen,

die Extremalbedingung lautet:

V(r,h) = [mm] \pi [/mm] r²h

Das Volumen ist durch den Materialverbrauch beschränkt, daraus ergibt sich für die Manteloberfläche (Nebenbedingung):

O = [mm] \pi [/mm] r² + [mm] 2\pi [/mm] rh

dies nun nach h umformen:

h = [mm] \bruch{O - \pi r²}{2\pi r} [/mm] 'kann ich nicht kürzen, denn Summen kürzen nur die Dummen, oder?

aber vereinfachen und zwar:

h = [mm] \bruch{1}{2\pi r}(O [/mm] - [mm] \pi [/mm] r²)

und nun in die Extremalbedingung einsetzen:

V(r) = [mm] \pi [/mm] r² [mm] \cdot{} \bruch{1}{2\pi r}(O [/mm] - [mm] \pi [/mm] r²) = [mm] \bruch{\pi r²}{2\pi r}(O [/mm] - [mm] \pi [/mm] r²) = [mm] \bruch{1}{2}\bruch{\pi r²}{\pi r}(O [/mm] - [mm] \pi [/mm] r²) = [mm] \bruch{1}{2} \cdot{} [/mm] r(O - [mm] \pi [/mm] r²) = [mm] \bruch{1}{2} [/mm] (Or - [mm] \pi [/mm] r³)

dies nun ableiten:

V'(r) = [mm] \bruch{1}{2}(O [/mm] - [mm] 3\pi [/mm] r²) 'warum fällt denn das r weg, ist dies wie ein x zu behandeln?

V''(r) = [mm] \bruch{1}{2}(- 6\pi [/mm] r) = [mm] -3\pi [/mm] r 'das O fällt weg, Mantelfläche, da es eine normale Zahl ist und dies ergibt Null, oder?

V'(r) = 0 -> [mm] \bruch{1}{2}(O [/mm] - [mm] 3\pi [/mm] r²) = 0 |/0,5

O - [mm] 3\pi [/mm] r² = 0

r = [mm] \wurzel{\bruch{-O}{-3\pi}} [/mm] = [mm] \pm \wurzel{\bruch{O}{3\pi}} [/mm]

für r kommt nur ein positiver Wert vor, also V''(+ [mm] \wurzel{\bruch{O}{3\pi}}) [/mm] < 0 wegen [mm] -3\pi \cdot{} [/mm] (+) r = -O

Somit liegt das größtmögliche Volumen bei  r = + [mm] \wurzel{\bruch{O}{3\pi}} [/mm] = + [mm] \wurzel{\bruch{3}{3\pi}} [/mm] = 0,564m


In der Lösung steht noch, dass sich das maximale Volumen aus [mm] V_{max} [/mm] = [mm] \bruch{O}{3} \wurzel{\bruch{O}{3\pi}} [/mm] ergebe. Wenn ich nun den Ausdruck von r in V(r) einsetze komme ich soweit:

V(+ [mm] \wurzel{\bruch{O}{3\pi}}) [/mm] = [mm] \bruch{O}{2\pi} \cdot{} \bruch{1}{2\pi \wurzel{\bruch{O}{3\pi}}} [/mm] (O - [mm] \bruch{O}{2\pi}) [/mm] = ? 'wie geht es dann weiter

Vielen Dank im Voraus.

        
Bezug
max. Volumen, Blechtonne: Antwort
Status: (Antwort) fertig Status 
Datum: 13:14 Mi 19.03.2008
Autor: angela.h.b.


> Welches Volumen kann eine oben offene zylinderformige
> Blechtonne höchstens haben, wenn zu ihrer Herstellung genau
> 3m² Blech verbraucht werden?
>  Hallo Zusammen,
>  
> die Extremalbedingung lautet:
>  
> V(r,h) = [mm]\pi[/mm] r²h
>
> Das Volumen ist durch den Materialverbrauch beschränkt,
> daraus ergibt sich für die Manteloberfläche
> (Nebenbedingung):
>  
> O = [mm]\pi[/mm] r² + [mm]2\pi[/mm] rh
>  
> dies nun nach h umformen:
>  
> h = [mm]\bruch{O - \pi r²}{2\pi r}[/mm] 'kann ich nicht kürzen, denn
> Summen kürzen nur die Dummen, oder?

Hallo,

ja.


>  
> aber vereinfachen und zwar:
>  
> h = [mm]\bruch{1}{2\pi r}(O[/mm] - [mm]\pi[/mm] r²)
>  
> und nun in die Extremalbedingung einsetzen:
>  
> V(r) = [mm]\pi[/mm] r² [mm]\cdot{} \bruch{1}{2\pi r}(O[/mm] - [mm]\pi[/mm] r²) =
> [mm]\bruch{\pi r²}{2\pi r}(O[/mm] - [mm]\pi[/mm] r²) = [mm]\bruch{1}{2}\bruch{\pi r²}{\pi r}(O[/mm]
> - [mm]\pi[/mm] r²) = [mm]\bruch{1}{2} \cdot{}[/mm] r(O - [mm]\pi[/mm] r²) =
> [mm]\bruch{1}{2}[/mm] (Or - [mm]\pi[/mm] r³)
>  
> dies nun ableiten:
>  
> V'(r) = [mm]\bruch{1}{2}(O[/mm] - [mm]3\pi[/mm] r²) 'warum fällt denn das r
> weg, ist dies wie ein x zu behandeln?

Haargenau. Du hast Deine Funktion nun in Abhängigkeit von r (statt wie gewohnt von x) und leitest entsprechend nach r (statt wie gewohnt von x) ab.


>  
> V''(r) = [mm]\bruch{1}{2}(- 6\pi[/mm] r) = [mm]-3\pi[/mm] r 'das O fällt weg,
> Mantelfläche, da es eine normale Zahl ist und dies ergibt
> Null, oder?

Ja.

>  
> V'(r) = 0 -> [mm]\bruch{1}{2}(O[/mm] - [mm]3\pi[/mm] r²) = 0 |/0,5
>  
> O - [mm]3\pi[/mm] r² = 0
>  
> r = [mm]\wurzel{\bruch{-O}{-3\pi}}[/mm] = [mm]\pm \wurzel{\bruch{O}{3\pi}}[/mm]
>  
> für r kommt nur ein positiver Wert vor, also V''(+
> [mm]\wurzel{\bruch{O}{3\pi}})[/mm] < 0 wegen [mm]-3\pi \cdot{}[/mm] (+) r =
> -O
>  
> Somit liegt das größtmögliche Volumen bei  r = +
> [mm]\wurzel{\bruch{O}{3\pi}}[/mm] = + [mm]\wurzel{\bruch{3}{3\pi}}[/mm] =
> 0,564m
>  
>
> In der Lösung steht noch, dass sich das maximale Volumen
> aus [mm]V_{max}[/mm] = [mm]\bruch{O}{3} \wurzel{\bruch{O}{3\pi}}[/mm] ergebe.
> Wenn ich nun den Ausdruck von r in V(r) einsetze komme ich
> soweit:
>  
> V(+ [mm]\wurzel{\bruch{O}{3\pi}})[/mm] = [mm]\bruch{O}{2\pi} \cdot{} \bruch{1}{2\pi \wurzel{\bruch{O}{3\pi}}}[/mm] (O - [mm]\bruch{O}{2\pi})[/mm] = ? 'wie geht es dann weiter

Du scheinst es gleich hier einzusetzen:

V(r) = $ [mm] \pi [/mm] $ r² $ [mm] \cdot{} \bruch{1}{2\pi r}(O [/mm] $ - $ [mm] \pi [/mm] $ r²) , und beim Einsetzen ist irgendwas schiefgegangen. (Einfacher wär's gewesen, gleich ...= [mm]\bruch{1}{2} \cdot{}[/mm] r(O - [mm]\pi[/mm] r²) zu verwenden.)

Gucken wir also mal:

[mm] V(\wurzel{\bruch{O}{3\pi}}) [/mm] = $ [mm] \pi $\bruch{O}{3\pi} [/mm] $ [mm] \cdot{} \bruch{1}{2\pi \wurzel{\bruch{O}{3\pi}}}(O [/mm] $ - $ [mm] \pi $\bruch{O}{3\pi}) [/mm]

= $ [mm] $\bruch{O}{3} [/mm] $ [mm] \cdot{} \bruch{1}{2\pi \wurzel{\bruch{O}{3\pi}}} [/mm] (O $ - [mm] $$\bruch{O}{3}) [/mm]

[mm] =\bruch{O}{3\pi} \cdot{} \bruch{1}{2}*\wurzel{\bruch{3\pi}{0}} [/mm] (O  - [mm] \bruch{O}{3}) [/mm]

= [mm] \bruch{1}{2}*\wurzel{\bruch{O}{3\pi}}*\bruch{2}{3}O [/mm]

[mm] =\bruch{O}{3}*\wurzel{\bruch{O}{3\pi}} [/mm]

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]