matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebramatrizen endlicher ordnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - matrizen endlicher ordnung
matrizen endlicher ordnung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

matrizen endlicher ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 So 03.05.2009
Autor: mini111

Aufgabe
Zeigen sie,dass die Elemente endlicher Ordnung [mm] \pmat{ a & b \\ c & d } \in SL(2,\IZ) [/mm] durch +-id  und diejenigen mit |a+d|<2 gegeben sind.(TIP:Was folgt für die Eigenwerte einer Matrix endlicher Ordnung?)beweisen sie mit Hilfe des charakteristischen Polynoms ,dass diese endlichen Ordnungen nur 1,2,3,4,6 sein können.

Hallo,

Also ich habe mir mal alle möglichen Matrizen  für die |a+d|<2 gilt aufgeschrieben.Da komme ich auf 7 Stück aber irgendwie verstehe ich den ersten Satz in dieser Aufgabe vom sinn her nicht wirklich.Was meint man damit ,dass man zeigen soll dass die elemente durch +-id gegeben sind.wie soll man das verstehen?Ich versteh die Fragestellung schon nicht.
Danke schonmal für eure Hilfe.

Grüße

        
Bezug
matrizen endlicher ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:39 So 03.05.2009
Autor: felixf

Hallo!

> Zeigen sie,dass die Elemente endlicher Ordnung [mm]\pmat{ a & b \\ c & d } \in SL(2,\IZ)[/mm]
> durch +-id  und diejenigen mit |a+d|<2 gegeben
> sind.(TIP:Was folgt für die Eigenwerte einer Matrix
> endlicher Ordnung?)beweisen sie mit Hilfe des
> charakteristischen Polynoms ,dass diese endlichen Ordnungen
> nur 1,2,3,4,6 sein können.
>  Hallo,
>  
> Also ich habe mir mal alle möglichen Matrizen  für die
> |a+d|<2 gilt aufgeschrieben.Da komme ich auf 7 Stück aber
> irgendwie verstehe ich den ersten Satz in dieser Aufgabe
> vom sinn her nicht wirklich.Was meint man damit ,dass man
> zeigen soll dass die elemente durch +-id gegeben sind.wie
> soll man das verstehen?Ich versteh die Fragestellung schon
> nicht.

Du sollst zeigen:

Eine Matrix $A = [mm] \pmat{ a & b \\ c & d } \in [/mm] SL(2, [mm] \IZ)$ [/mm] hat genau dann endliche Ordnung, wenn gilt dass $A$ die Einheitsmatrix oder Minus die Einheitsmatrix ist oder das $|a + d| < 2$ ist.

LG Felix


Bezug
                
Bezug
matrizen endlicher ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:03 Mo 04.05.2009
Autor: mini111

Hallo

Also die ordnung von +id ist 1 und von -id ist 2 aber ich hab jetzt absoooolut keine ahnung was ich mit dem rest anfangen soll und wie man den tip benutzen könnte.Ich habe einfach keine Idee.:(

Gruß

Bezug
                        
Bezug
matrizen endlicher ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:40 Mo 04.05.2009
Autor: felixf

Hallo!

> Also die ordnung von +id ist 1 und von -id ist 2 aber ich
> hab jetzt absoooolut keine ahnung was ich mit dem rest
> anfangen soll und wie man den tip benutzen könnte.Ich habe
> einfach keine Idee.:(

Sind [mm] $\lambda_1, \dots, \lambda_t$ [/mm] die Eigenwerte von $A$, so sind [mm] $\lambda_1^n, \dots, \lambda_t^n$ [/mm] die Eigenwerte von [mm] $A^n$. [/mm]

Wenn es also ein $n [mm] \in \IN$ [/mm] gibt mit [mm] $A^n [/mm] = [mm] E_n$, [/mm] so muss fuer alle Eigenwerte [mm] $\lambda$ [/mm] von $A$ gelten [mm] $\lambda^n [/mm] = 1$.

So. Die Eigenwerte [mm] $\lambda$ [/mm] sind jetzt alle algebraische Ganzzahlen von Grad [mm] $\le [/mm] 2$, da die Nullstellen des charakteristischen Polynoms von $A$ sind (hier ist $A$ eine $2 [mm] \times [/mm] 2$-Matrix mit Eintraegen aus [mm] $\IZ$). [/mm] Weiterhin ist die Determinante von $A$ gleich 1, womit das Produkt der beiden Eigenwerte 1 ist. Damit kommen schonmal nicht mehr viele Zahlen zur Auswahl.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]