matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbbildungen und Matrizenmatrix x vektor=vektor
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Abbildungen und Matrizen" - matrix x vektor=vektor
matrix x vektor=vektor < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

matrix x vektor=vektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:34 Do 19.11.2009
Autor: CarstenHayduk

Aufgabe
[mm] \pmat{ 0.87 & .10 & .01\\ .1 & .78 & .15 \\ .03 & .12 & .87 } [/mm]
das ist die ausgangsmatrix.
in einer aufgabe wird folgendes gefragt:
bei welcher anfangsverteilung der schichten ergibt sich keine gesamtgesellschaftliche veränderung


also mein ansatz waere dann ein LGS :
[mm] \pmat{ 0.87 & .10 & .01\\ .1 & .78 & .15 \\ .03 & .12 & .87 } [/mm] mal ein vektor(x,y,z) = vektor(x,y,z)

wie gehe ich dann weiter vor?

        
Bezug
matrix x vektor=vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 20:39 Do 19.11.2009
Autor: angela.h.b.


> [mm]\pmat{ 0.87 & .10 & .01\\ .1 & .78 & .15 \\ .03 & .12 & .87 }[/mm]
>  
> das ist die ausgangsmatrix.
>  in einer aufgabe wird folgendes gefragt:
>  bei welcher anfangsverteilung der schichten ergibt sich
> keine gesamtgesellschaftliche veränderung
>  
>
> also mein ansatz waere dann ein LGS :
>  [mm]\pmat{ 0.87 & .10 & .01\\ .1 & .78 & .15 \\ .03 & .12 & .87 }[/mm] [mm] *\vektor{x\\y\\z} [/mm] = [mm] \vektor{x\\y\\z} [/mm]
>  
> wie gehe ich dann weiter vor?  

Hallo,

so:

[mm] \pmat{ 0.87 & .10 & .01\\ .1 & .78 & .15 \\ .03 & .12 & .87 } *\vektor{x\\y\\z} [/mm] = [mm] \pmat{ 1 & 0& 0\\ 0 & 1 & 0 \\ 0 & 0& 1 } \vektor{x\\y\\z} [/mm]

<==> [mm] \pmat{ 0.87-1 & .10 & .01\\ .1 & .78-1 & .15 \\ .03 & .12 & .87-1 } *\vektor{x\\y\\z} =\vektor{0\\0\\0} [/mm]

Nun bestimme den Kern der neuen Matrix, oder anders formuliert: löse das Gleichungssystem.

Gruß v. Angela




Bezug
                
Bezug
matrix x vektor=vektor: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Do 19.11.2009
Autor: CarstenHayduk

tut mir leid, dass das alle so schlampig ist, bin nur im stress^^
ja das hatte ich bereist versucht, aber wenn ich die amtrix via den TR löse erhalte ich fuer alle variabeln eine 0 und das kann nicht sein, da ich auf 1 kommen muss, da die bevölkerung 100% sein muss

Bezug
                        
Bezug
matrix x vektor=vektor: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Do 19.11.2009
Autor: angela.h.b.


>  ja das hatte ich bereist versucht, aber wenn ich die
> amtrix via den TR löse erhalte ich fuer alle variabeln
> eine 0 und das kann nicht sein, da ich auf 1 kommen muss,
> da die bevölkerung 100% sein muss

Hallo,

ich hatte die Aufgabe gar nicht gelesen...

da steht ja, daß es keine gesellschaftliche veränderung geben soll.
das heißt. man darf eine Veränderung der Bevölkerungszahl haben, aber die "Schichtung" soll im Verhältnis gleich bleiben,

so daß Du eher

$ [mm] \pmat{ 0.87 & .10 & .01\\ .1 & .78 & .15 \\ .03 & .12 & .87 } [/mm] $ $ [mm] \cdot{}\vektor{x\\y\\z} [/mm] $ = [mm] \lambda [/mm] $ [mm] \vektor{x\\y\\z} [/mm] $  lösen mußt.

Also Eigenvektoren und Eigenwerte bestimmen.

(Falls Du nicht weißt, was das ist: nachlesen und ggf. nachfragen.)

Gruß v. Angela




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]