matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLogiklogischer formel beweis
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Logik" - logischer formel beweis
logischer formel beweis < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

logischer formel beweis: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 20:02 Sa 19.04.2014
Autor: DieNase

Aufgabe
(b) Man zeige, dass es für jedes  n [mm] \in [/mm] N; n [mm] \ge [/mm] 3 Formeln psi(1), ... , psi(n) gibt, sodass nicht alle Formeln gleichzeitig erfüllt sein können ( psi(1)^...^psi(n) ist eine Kontradiktion), aber jedes Paar von
Formeln ( psi(i) ^ (j)) erfüllbar ist.

Es handelt sich bei dieser aufgabe um logische formeln, und ehrlich gesagt bin ich durchwegs verwirrt, bzw. komplett ratlos wo ich hier überhaupt anfangen soll.

In teil a) der aufgabe sollte ich ja nur 3 formeln finden die genau  das zeigen. Jetzt soll ich es beweisen das es für n formeln immer so ist...

Leider fehlt mir hier grad jeglicher ansatz. Ich wollte mal fragen ob jemand mir ne grobe richtung weißen kann wie ich sowas anfange weil das versteh ich grad garnicht. Am liebsten wäre mir wenn mir einer einfach nur sagt fang mal so an: und dann schon nix mehr sagen. Bin mir sicher wenn ich nur ein anfangspunkt habe komm ich mit viel nachdenken schon selber drauf.

        
Bezug
logischer formel beweis: Antwort
Status: (Antwort) fertig Status 
Datum: 05:39 Mo 21.04.2014
Autor: tobit09

Hallo DieNase!


> (b) Man zeige, dass es für jedes  n [mm]\in[/mm] N; n [mm]\ge[/mm] 3
> Formeln psi(1), ... , psi(n) gibt, sodass nicht alle
> Formeln gleichzeitig erfüllt sein können (
> psi(1)^...^psi(n) ist eine Kontradiktion), aber jedes Paar
> von
>  Formeln ( psi(i) ^ (j)) erfüllbar ist.


>  Es handelt sich bei dieser aufgabe um logische formeln,
> und ehrlich gesagt bin ich durchwegs verwirrt, bzw.
> komplett ratlos wo ich hier überhaupt anfangen soll.
>
> In teil a) der aufgabe sollte ich ja nur 3 formeln finden
> die genau  das zeigen. Jetzt soll ich es beweisen das es
> für n formeln immer so ist...

Was hast du denn bei a) gefunden? Vielleicht lässt sich dieses Beispiel verallgemeinern.


> Leider fehlt mir hier grad jeglicher ansatz. Ich wollte mal
> fragen ob jemand mir ne grobe richtung weißen kann wie ich
> sowas anfange weil das versteh ich grad garnicht. Am
> liebsten wäre mir wenn mir einer einfach nur sagt fang mal
> so an: und dann schon nix mehr sagen. Bin mir sicher wenn
> ich nur ein anfangspunkt habe komm ich mit viel nachdenken
> schon selber drauf.

Du könntest es für geeignete [mm] $\psi_1,\ldots,\psi_{n-1}$ [/mm] mal mit

     [mm] $\psi_n:=\neg\psi_1\vee\neg\psi_2\vee\ldots\vee\neg\psi_{n-1}$ [/mm]

probieren.

Eine der geforderten Eigenschaften (Welche?) ist dann unabhängig von der Wahl von [mm] $\psi_1,\ldots,\psi_{n-1}$ [/mm] erfüllt.

Nun gilt es [mm] $\psi_1,\ldots,\psi_{n-1}$ [/mm] so zu wählen, dass mit obigem [mm] $\psi_n$ [/mm] auch die andere Eigenschaft erfüllt ist.


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Logik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]