matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationlogarithmische Differentiation
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentiation" - logarithmische Differentiation
logarithmische Differentiation < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

logarithmische Differentiation: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:48 Di 03.02.2009
Autor: gerrard87

Aufgabe
Wenden Sie für die folgende Funktion y = f(x) die logarithmische Differentiation an:


y [mm] =(1+\bruch{1}{x})^{x} [/mm]

Mein Lösungsweg:

ln y = ln [mm] (1+\bruch{1}{x})^{x} [/mm]

ln y = x * ln [mm] (1+\bruch{1}{x}) [/mm]

[mm] \bruch{1}{y} [/mm] * y´ = 1 * ln ( 1 [mm] +\bruch{1}{x}) [/mm] + [mm] (\bruch{1}{1+\bruch{1}{x}}) [/mm] * [mm] -x^{-2} [/mm] | *y

y´ = 1 * ln ( 1 [mm] +\bruch{1}{x}) [/mm] + [mm] (\bruch{1}{1+\bruch{1}{x}}) [/mm] * [mm] -x^{-2} [/mm] * [mm] (1+\bruch{1}{x})^{x} [/mm]

Frage, stimmt das so?, bei der Ableitung bin ich mir nähmlich überhaupt nicht sicher


Danke euch

        
Bezug
logarithmische Differentiation: Hinweise
Status: (Antwort) fertig Status 
Datum: 15:55 Di 03.02.2009
Autor: Roadrunner

Hallo gerrard!


In Deiner letzten Zeile fehlen noch Klammern. Zudem kann man hier noch zusammenfassen.

Man kann sich auch die Ableitung vereinfachen, wenn man zuvor wie folgt umformt:
[mm] $$\ln\left(1+\bruch{1}{x}\right) [/mm] \ = \ [mm] \ln\left(\bruch{x+1}{x}\right) [/mm] \ = \ [mm] \ln(x+1)-\ln(x)$$ [/mm]

Gruß vom
Roadrunner


Bezug
        
Bezug
logarithmische Differentiation: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Di 03.02.2009
Autor: gerrard87

dankd ir


[mm] y^{x} [/mm] = [mm] x^{y} [/mm]

bräuchte da noch einen Tipp, wie stellt man das um sinnvoll um damit man ableiten kann.

Danke

Bezug
                
Bezug
logarithmische Differentiation: Logarithmus
Status: (Antwort) fertig Status 
Datum: 16:43 Di 03.02.2009
Autor: Roadrunner

Hallo gerrard!


Wende auf beiden Seiten der Gleichung zunächst den natürliche Logarithmus [mm] $\ln(...)$ [/mm] an und ziehe jeweils den Exponenten vor den ln-Term.


Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]