matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Stochastiklog-likelihood - Bernoulli
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - log-likelihood - Bernoulli
log-likelihood - Bernoulli < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

log-likelihood - Bernoulli: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 16:32 Mi 23.06.2010
Autor: phoenixblob

Aufgabe
Consider a set of T independent observations on a Bernoulli random variable, which takes on the values [mm] y_{t} [/mm] = 1 with probability θ and the values [mm] y_{t} [/mm] = 0 with probability 1 - θ.

a) Derive the log-likelihood function for this problem
b) Derive the score and the MLE of θ
c) Derive the information matrix
d) Compute LR, W and LM-test statistics for testing [mm] H_{0}: [/mm] θ = θ_0 vs. [mm] H_{A}: [/mm] θ [mm] \not= [/mm] θ_0

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

bei a) und b) habe ich eine bereits eine halbwegs plausible Lösung, bei der ich nur wissen möchte, ob sie so stimmt.

a)

probability distribution
f(θ, p) = θ^p * (1- θ^(1-p))

Dann darüber die Summe ziehen.

Und dann die Funktion logarithmieren.

ln L(θ, p) = ln [mm] \produkt_{i=1}^{t} p_i [/mm] * ln(θ) + [mm] (1-p_i) [/mm] * ln(1-θ)


b)

score

[mm] g_i [/mm] = [mm] \partial [/mm] ln L(θ, [mm] p)/\partial [/mm] θ = [mm] p_i/theta [/mm] - [mm] (1-p_i)/(1-theta) [/mm]

MLE

[mm] g_i [/mm] = 0

Ergebnis: p = θ


c)

Ich weiß, dass ich hierfür den Erwartungswert des quadrierten Score verwenden muss, also

[mm] I_i(θ) [/mm] = [mm] E[(g_i(θ))²] [/mm] = [mm] E((p_i/theta [/mm] - [mm] (1-p_i)/(1-theta))^{2}) [/mm]

und das einzige das ich jetzt habe, ist einfach die binomische Formel zu verwenden und auszurechnen. Weitere Vereinfachungen bzw. Umformulierungen habe ich nicht gefunden, oder was es das bereits schon?

d)
Da habe ich absolut keine Ahnung. Ich weiß zwar, wie diese Test-Statistiken vom theoretischen Standpunkt her funktionieren (Wald-Test schaut auf den nicht restringierten Parameter, LR-Test schaut auf die Differenz zwischen restringierten und nicht restringierten Parameter und der LM-Test schaut auf den restringierten Paramter), aber wie ich da mit Zahlen umgehen soll, weiß ich nicht.


Entschuldigung, aber die Darstellung des Theta-Zeichens hat nicht immer funktioniert, weswegen ich den Buchstaben teilweise wörtlich ausgeschrieben haben.

Danke für eure Hilfe!

        
Bezug
log-likelihood - Bernoulli: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Mo 28.06.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]