matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysislog-konvex-Funktionen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - log-konvex-Funktionen
log-konvex-Funktionen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

log-konvex-Funktionen: Rechnung
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:11 So 19.12.2004
Autor: nemo102

Hallo!

Bin gerade dabei den folgenden Satz durchzugehen:
Angenommen f(x) ist eine zweimal stetig diff.bare Funktion. Wenn die Ungleichung
f(x)>0,  [mm] f(x)f''(x)-(f'(x))^2 \ge [/mm] 0
gilt, dann f(x) ist log-konvex.

In meinem vorliegenden Beweis heißt es, dass der zweite abgeleitete log f(x) den Wert
[mm] \bruch{f(x)f''(x)-(f'(x))^2}{(f(x))^2} [/mm]
hat.

Hab den Wert jetzt schon mehrmals nachgerechnet und komme einfach nicht drauf. Kann mir da jemand von euch helfen und mir die Rechenschritte explizit aufschreiben?

Gruß Nemo





        
Bezug
log-konvex-Funktionen: deutlicher Hinweis
Status: (Antwort) fertig Status 
Datum: 15:50 So 19.12.2004
Autor: Peter_Pein

Hallo Nemo,
ich habe immer ein schlechtes Gewissen, wenn ich Lösungen "vorsage". Deshalb nur eine Anleitung:

erste Ableitung: mit Kettenregel (auch bekannt als "innere mal äußere").
zweite Ableitung: Quotientenregel

zur Erinnerung:
[mm] (\bruch{f(x)}{g(x)})'=\bruch{f'(x)*g(x)+f(x)*g'(x)}{g(x)^{2}} [/mm]

und nun noch "sehen", was Du für f bzw. g dort einsetzen mußt.

Ich hoffe, dass es Dir hilft,
Peter


Bezug
        
Bezug
log-konvex-Funktionen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:43 Mo 20.12.2004
Autor: nemo102

Hallo!

Danke für die Antwort! Hab es nachgerechnet und bin drauf gekommen!

Gruß Silke



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]