matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenZahlentheorielösungen der Kongruenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Zahlentheorie" - lösungen der Kongruenz
lösungen der Kongruenz < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lösungen der Kongruenz: Korrektur
Status: (Frage) beantwortet Status 
Datum: 10:22 Fr 03.06.2011
Autor: anetteS

Aufgabe
Finde für b [mm] \in \IN [/mm] Lösungen x [mm] \in \IN [/mm] der folgenden Kongruenz:
5x [mm] \equiv [/mm] b (mod 6).

Hallolchen!

Ich brauche bei der obigen Aufgabe Eure Hilfe.
Ich habe den folgenden Ansatz:
5x [mm] \equiv [/mm] b (mod 6) -> x [mm] \equiv [/mm] b/5 (mod 6)
b/5 muss aus N sein, also betrachte ich für b alle Vielfachen von 5.
Jetzt wollte ich einfach alle Möglichkeiten durchgehen:
z.B. für x [mm] \equiv [/mm] 5/5 (mod 6)= 1 (mod 6) folgt x=7+k*6 k=0,1,2...
für x [mm] \equiv [/mm] 10/5 (mod 6)= 2 (mod 6) folgt x=8+k*6
Das muss ich ja nur bis 30/5=b machen, denn da komme ich ja schon auf 0 (mod 6).

Ist dieser Lösungsweg soweit in Ordnung?
Gibt es eventuell einen anderen effektiveren, denn mein Lösungsweg würde bei größeren Zahlen sehr viel (Schreib)aufwand bedetuen.

Vielen Dank und viele Grüße,
Anette.

        
Bezug
lösungen der Kongruenz: Antwort
Status: (Antwort) fertig Status 
Datum: 10:47 Fr 03.06.2011
Autor: Teufel

Hi!

Es sieht ok aus, aber ja, das ist etwas zu umständlich.

Versuche stattdessen folgendes: Suche das Inverse von 5 modulo 6, also eine Zahl r, sodass [mm] $5r\equiv [/mm] 1$ mod 6 gilt. Denn dann kannst du beide Seiten *r rechnen und vor dem x steht nur noch eine 1.

In deinem Fall kannst du einfach mal alle Zahlen durchprobieren.

Wenn die Zahlen größer werden und du das nicht mehr so leicht überblicken kannst, benutze den erweiterten euklidischen Algorithmus, um ein Inverses zu finden.
In deinem Fall würde das so gehen:
ggT(5,6)=1, also existieren r, s, sodass 5r+6s=1 ist. Dabei ist das r, dasjenige r, das du brauchst. Finde also r, s, sodass die Gleichheit gilt und modulo 6 fällt dann 6s weg und dort steht [mm] $5r\equiv [/mm] 1$ mod 6.

Bezug
                
Bezug
lösungen der Kongruenz: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:00 Sa 04.06.2011
Autor: felixf

Moin,

> Versuche stattdessen folgendes: Suche das Inverse von 5
> modulo 6, also eine Zahl r, sodass [mm]5r\equiv 1[/mm] mod 6 gilt.
> Denn dann kannst du beide Seiten *r rechnen und vor dem x
> steht nur noch eine 1.
>  
> In deinem Fall kannst du einfach mal alle Zahlen
> durchprobieren.

wenn man bedenkt, dass $5 [mm] \equiv [/mm] -1 [mm] \pmod{6}$ [/mm] ist, geht es noch einfacher ;-)

LG Felix


Bezug
                        
Bezug
lösungen der Kongruenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:46 Do 09.06.2011
Autor: steve.joke

Hi,

wie kann man die aufgabe mit dem tipp von felix lösen? habe nämlich ein ähnliches problem....

grüße

Bezug
                                
Bezug
lösungen der Kongruenz: Antwort
Status: (Antwort) fertig Status 
Datum: 21:35 Do 09.06.2011
Autor: abakus


> Hi,
>  
> wie kann man die aufgabe mit dem tipp von felix lösen?
> habe nämlich ein ähnliches problem....
>  
> grüße

Na,
wenn [mm] 5\equiv-1 [/mm] mod 6 gilt, dann gilt auch
[mm] 5x\equiv-1x [/mm] mod 6.
Somit muss auch [mm] -x\equiv [/mm] b mod 6 gelten.
Gruß Abakus


Bezug
                                        
Bezug
lösungen der Kongruenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:42 Do 09.06.2011
Autor: steve.joke

Hi,

> Na,
> wenn $ [mm] 5\equiv-1 [/mm] $ mod 6 gilt, dann gilt auch
> $ [mm] 5x\equiv-1x [/mm] $ mod 6.
> Somit muss auch $ [mm] -x\equiv [/mm] $ b mod 6 gelten.

Wie kommtst du denn von $ [mm] 5x\equiv-1x [/mm] $ mod 6 auf $ [mm] -x\equiv [/mm] $ b mod 6??

Und was wäre dann mit $ [mm] -x\equiv [/mm] $ b mod 6 die Lösung des Problems [mm] 5x\equiv [/mm] b mod 6?? Irgendwie verstehe ich das noch nicht so ganz....

Bezug
                                                
Bezug
lösungen der Kongruenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:02 Do 09.06.2011
Autor: abakus


> Hi,
>  
> > Na,
>  > wenn [mm]5\equiv-1[/mm] mod 6 gilt, dann gilt auch

>  > [mm]5x\equiv-1x[/mm] mod 6.

>  > Somit muss auch [mm]-x\equiv[/mm] b mod 6 gelten.

>  
> Wie kommtst du denn von [mm]5x\equiv-1x[/mm] mod 6 auf [mm]-x\equiv[/mm] b
> mod 6??

Deine Aufgabe lautete 5x [mm] \equiv [/mm] b mod 6.
Wegen -x [mm] \equiv [/mm] 5x mod 6 wird daraus
-x [mm] \equiv [/mm] 5x  [mm] \equiv [/mm] b mod 6,
also -x  [mm] \equiv [/mm] b mod 6.

>  
> Und was wäre dann mit [mm]-x\equiv[/mm] b mod 6 die Lösung des
> Problems [mm]5x\equiv[/mm] b mod 6?? Irgendwie verstehe ich das noch
> nicht so ganz....


Bezug
                                                        
Bezug
lösungen der Kongruenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:34 Do 09.06.2011
Autor: steve.joke

entweder bin ich gerade bild, oder keine ahnung....

> Deine Aufgabe lautete 5x $ [mm] \equiv [/mm] $ b mod 6.
> Wegen -x $ [mm] \equiv [/mm] $ 5x mod 6 wird daraus
> -x $ [mm] \equiv [/mm] $ 5x  $ [mm] \equiv [/mm] $ b mod 6, also -x  $ [mm] \equiv [/mm] $ b mod 6.

Also die Aufgabe lautet in diesem Fall ja: 5x $ [mm] \equiv [/mm] $ b mod 6

Wir fangen an und sagen:

5 [mm] \equiv [/mm] -1 [mm] \pmod{6}, [/mm] diese Gleichung mutliplizieren wir mit x und erhalten
5x [mm] \equiv [/mm] -1x [mm] \pmod{6}, [/mm] die Gleichung kann ich auch schreiben als
-x [mm] \equiv [/mm] 5x [mm] \pmod{6} [/mm] (I)

so, und wie mache ich das jetzt weiter? verstehe irgendwie immer noch nicht deine schritte? also
-x $ [mm] \equiv [/mm] $ 5x  $ [mm] \equiv [/mm] $ b (mod 6)....

weil ich kann ja 5x $ [mm] \equiv [/mm] $ b (mod 6) zu b $ [mm] \equiv [/mm] $ 5x (mod 6). Diese Gl. kann ich ja jetzt in (I) einsetzen und erhalte:

-x [mm] \equiv [/mm] b

aber wie kommste dann auf -x $ [mm] \equiv [/mm] $ 5x  $ [mm] \equiv [/mm] $ b (mod 6)???





Bezug
                                                                
Bezug
lösungen der Kongruenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:44 Do 09.06.2011
Autor: abakus


> entweder bin ich gerade bild, oder keine ahnung....
>  
> > Deine Aufgabe lautete 5x [mm]\equiv[/mm] b mod 6.
>  > Wegen -x [mm]\equiv[/mm] 5x mod 6 wird daraus

>  > -x [mm]\equiv[/mm] 5x  [mm]\equiv[/mm] b mod 6, also -x  [mm]\equiv[/mm] b mod 6.

>  
> Also die Aufgabe lautet in diesem Fall ja: 5x [mm]\equiv[/mm] b mod
> 6
>  
> Wir fangen an und sagen:
>  
> 5 [mm]\equiv[/mm] -1 [mm]\pmod{6},[/mm] diese Gleichung mutliplizieren wir
> mit x und erhalten
>  5x [mm]\equiv[/mm] -1x [mm]\pmod{6},[/mm] die Gleichung kann ich auch
> schreiben als
>  -x [mm]\equiv[/mm] 5x [mm]\pmod{6}[/mm] (I)
>  
> so, und wie mache ich das jetzt weiter? verstehe irgendwie
> immer noch nicht deine schritte? also
> -x [mm]\equiv[/mm] 5x  [mm]\equiv[/mm] b (mod 6)....
>  
> weil ich kann ja 5x [mm]\equiv[/mm] b (mod 6) zu b [mm]\equiv[/mm] 5x (mod
> 6). Diese Gl. kann ich ja jetzt in (I) einsetzen und
> erhalte:
>  
> -x [mm]\equiv[/mm] b
>  
> aber wie kommste dann auf -x [mm]\equiv[/mm] 5x  [mm]\equiv[/mm] b (mod
> 6)???

Die Kongruenzrelation ist (als Äquivalenzrelation) transitiv. Wenn -x kongruent zu 5x und 5x kongruent zu b ist, dann ist auch -x kongruent zu b.

>  
>
>
>  


Bezug
                                                                        
Bezug
lösungen der Kongruenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:16 Do 09.06.2011
Autor: steve.joke

Ok,

danke für die erklärung, dann hätte ich das verstanden. fehlt jetzt nur noch:

-x [mm] \equiv [/mm] 5x [mm] \equiv [/mm] b (mod 6)

ich sehe hier keine großen unterschied. ob da jetzt  -x oder 5x, wie kann ich davon jetzt die lösung für x ablesen??

Bezug
                                                                                
Bezug
lösungen der Kongruenz: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Do 09.06.2011
Autor: reverend

Hallo steve.joke,

> danke für die erklärung, dann hätte ich das verstanden.

Gut. Das wirst Du noch öfter brauchen. ;-)

> fehlt jetzt nur noch:
>  
> -x [mm]\equiv[/mm] 5x [mm]\equiv[/mm] b (mod 6)
>  
> ich sehe hier keine großen unterschied. ob da jetzt  -x
> oder 5x, wie kann ich davon jetzt die lösung für x
> ablesen??

1) Da ist ja auch kein Unterschied, jedenfalls soweit es die Modulrechnung betrifft.
2) Zum Ablesen ist der Unterschied dann aber doch riesig, zumal die Division in der Modulrechnung so ihre Tücken hat. Die Multiplikation ist da einfacher.
Wenn -x=b ist, dann ist x was?
Wenn [mm] -x\equiv b\mod{6} [/mm] ist, dann ist [mm] x=?\mod{6} [/mm]

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]