matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentialgleichungenlösung DGL 1 Ordnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differentialgleichungen" - lösung DGL 1 Ordnung
lösung DGL 1 Ordnung < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lösung DGL 1 Ordnung: Trennung der Variablen?
Status: (Frage) beantwortet Status 
Datum: 18:07 Mo 07.02.2011
Autor: jooo

Aufgabe
Allgemeine Lösung von : [mm] y'(1+x^2)arctanx [/mm] -y=0


Habe mal Trennung der Variablen versucht und komme auf

[mm] \bruch{dy}{y}=\bruch{dx}{1+x^2 arctanx} [/mm]

Nun weiß ich jedoch nicht wie ich die rechte Seite integriere, ich finde auch nichts in meiner formelsammlung (Papula FS)

Gruß joooo

        
Bezug
lösung DGL 1 Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:23 Mo 07.02.2011
Autor: Kayle

Hallo,


>  
> [mm]\bruch{dy}{y}=\bruch{dx}{1+x^2 arctanx}[/mm]
>  
> Nun weiß ich jedoch nicht wie ich die rechte Seite
> integriere, ich finde auch nichts in meiner formelsammlung
> (Papula FS)
>  

Also du hast noch das "-" vergessen und die Klammern solltest auch nicht außer Acht lassen:
[mm] \integral{\bruch{dy}{y}}=-\integral{\bruch{dx}{(1+x^2) arctanx}} [/mm]

Dann würde ich die rechte Seite mit partieller Integration lösen:

[mm] -\integral{\bruch{1}{(1+x^2)}\bruch{1}{arctanx}dx} [/mm]

Wenn du nicht genau weißt wie das geht, steht z.B. bei Wikipedia genau, wie man die partielle Integration anwendet :)

Hoffe das hilft erstmal!

Gruß
Kayle


Bezug
                
Bezug
lösung DGL 1 Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:28 Sa 19.02.2011
Autor: jooo

>>Also du hast noch das "-" vergessen und die Klammern solltest auch >>nicht außer Acht lassen:
$ [mm] \integral{\bruch{dy}{y}}=-\integral{\bruch{dx}{(1+x^2) arctanx}} [/mm] $

Wiso minus???

Gruß Joooo



Bezug
                        
Bezug
lösung DGL 1 Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Sa 19.02.2011
Autor: schachuzipus

Hallo joooo,

> >>Also du hast noch das "-" vergessen und die Klammern
> solltest auch >>nicht außer Acht lassen:
> [mm]\integral{\bruch{dy}{y}}=-\integral{\bruch{dx}{(1+x^2) arctanx}}[/mm]
>  
> Wieso minus???

Kein Minus! Da hat sich Kayle schlicht verguckt ...



>  
> Gruß Joooo
>  
>  

LG

schachuzipus


Bezug
        
Bezug
lösung DGL 1 Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:37 Mo 07.02.2011
Autor: Teufel

Hi!

Beachte: [mm] arctan'(x)=\frac{1}{1+x^2}. [/mm] Und was weißt du über das Integral von [mm] \frac{f'}{f}? [/mm]

Bezug
                
Bezug
lösung DGL 1 Ordnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Sa 19.02.2011
Autor: jooo

[mm] \frac{f'}{f}? [/mm]

dies hat aber nicht mit der partiellen Integrartion zu tun? Du willst auf eine andere lösungsmöglichkeit hinaus! Oder?

Gruß
Jooo

Bezug
                        
Bezug
lösung DGL 1 Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:52 Sa 19.02.2011
Autor: schachuzipus

Hallo nochmal,


> [mm]\frac{f'}{f}?[/mm]
>
> dies hat aber nicht mit der partiellen Integrartion zu tun?

Ja, es hat nix mit partieller Integration zu tun ...

> Du willst auf eine andere lösungsmöglichkeit hinaus!

Substitution!

[mm]u=u(x)=f(x)[/mm]

In deinem Falle: [mm]u=u(x)=\arctan(x)[/mm]

> Oder?
>  
> Gruß
>  Jooo

LG

schachuzipus


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]