matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-Funktionenln funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - ln funktion
ln funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

ln funktion: ableitung
Status: (Frage) beantwortet Status 
Datum: 20:15 So 18.01.2009
Autor: DoktorQuagga

Aufgabe
Hallo, ich würde gerne wissen, ob die ableitung von [mm] \bruch{1}{(lnx)^{-1}} [/mm] folgende ist:

[mm] (-x)(lnx)^{2} [/mm]

        
Bezug
ln funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:19 So 18.01.2009
Autor: Steffi21

Hallo, nein, überlege dir zunächst, was der Exponent -1 im Nenner bewirkt, Steffi

Bezug
                
Bezug
ln funktion: rechnung
Status: (Frage) beantwortet Status 
Datum: 20:38 So 18.01.2009
Autor: DoktorQuagga

Aufgabe 1
[mm] \bruch{1}{(lnx)^{-1}} [/mm]
(I)-> ableiten Kettenregel
[mm] \bruch{1}{(-1) \* (lnx)^{-2} \* \bruch{1}{x} } [/mm]
(II)-> zusammenfassen
[mm] -\bruch{1}{\bruch{1}{x(lnx)^{2}}} [/mm]
(III)-> kehrwert bilden
[mm] -x(lnx)^{2} [/mm]

Aufgabe 2
Ist das nicht richtig? Bei welchem Schritt genau ist der Fehler?

...

Bezug
                        
Bezug
ln funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 So 18.01.2009
Autor: MathePower

Hallo DoktorQuagga,

> [mm]\bruch{1}{(lnx)^{-1}}[/mm]


Die Ableitung von [mm]\bruch{1}{z\left(x\right)}[/mm] ist [mm]-\bruch{z'\left(x\right)^}{z^{2}\left(x\right)}[/mm]


>  (I)-> ableiten Kettenregel

>  [mm]\bruch{1}{(-1) \* (lnx)^{-2} \* \bruch{1}{x} }[/mm]
>  (II)->

> zusammenfassen
>  [mm]-\bruch{1}{\bruch{1}{x(lnx)^{2}}}[/mm]
>  (III)-> kehrwert bilden

>  [mm]-x(lnx)^{2}[/mm]
>  Ist das nicht richtig? Bei welchem Schritt genau ist der
> Fehler?
>  ...


Gruß
MathePower

Bezug
                                
Bezug
ln funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 So 18.01.2009
Autor: DoktorQuagga

Aufgabe
Tut mir leid aber kann ich so nicht mit viel anfangen_
was bedeutet das? Wie wende ich die Formel an?

Danke...

Bezug
                                        
Bezug
ln funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 So 18.01.2009
Autor: MathePower

Hallo DoktorQuagga,

> Tut mir leid aber kann ich so nicht mit viel anfangen_
>  was bedeutet das? Wie wende ich die Formel an?
>  Danke...


Die Ableitung von [mm]\ln\left(x\right)^{-1}[/mm] muß dann im Zähler stehen.

Gruß
MathePower

Bezug
                                
Bezug
ln funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:37 So 18.01.2009
Autor: Steffi21

Hallo MathePower, warum darf ich nicht machen

[mm] \bruch{1}{(lnx)^{-1}}=?\bruch{1}{\bruch{1}{lnx}}=?lnx [/mm]

die Ableitung wäre dann (?) [mm] \bruch{1}{x} [/mm]

wo fehlen mir hier die mathematischen Kenntnisse, Danke Steffi

Bezug
                                        
Bezug
ln funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:50 So 18.01.2009
Autor: Tyskie84

Hallo,

du kannst das so machen wie du es vorgeschlagen hast (der einfachere Weg) oder so wie MathePower es vorgeschlagen hat. Beides führt zum selben Ergebnis:

[mm] \\z(x)=(ln(x))^{-1} [/mm]

[mm] \\z'(x)=\\((ln(x))^{-1})'=-\bruch{1}{x\cdot(ln(x)²} [/mm]

[mm] -\bruch{z'(x)}{(z(x))²}=-\bruch{-\bruch{1}{x\cdot(ln(x))²}}{(ln(x))²}=\bruch{1}{x} [/mm]

[hut] Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]