lineares GLS /keine Lsg.? < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 06:10 Mi 09.01.2008 | Autor: | Dan-T |
Aufgabe | Lösen Sie die linearen Gleichungssysteme
[mm] Ax=b_{i} [/mm] (i=1,2) mit [mm] A=\pmat{ 2 & 2 & 0 & 2 \\ 2 & -2 & 1 & 0 \\ 3 & -5 & 2 & -1 } [/mm] und [mm] b_{1}= \vektor{4 \\ 1 \\ 1}sowie b_{2}= \vektor{4 \\ 2 \\ 2} [/mm] |
Ich habe für beide GLS jeweils [mm] 0\not= [/mm] (Wert größer als Null) heraus.
Ist das GLS nicht lösbar und wie habe ich eine solche Fragestellung zu beantworten?
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Offenbar hast du dich bei einem verrechnet:
Zunächst Ax = [mm] b_{1}:
[/mm]
[mm] \pmat{ 2 & 2 & 0 & 2 & | & 4\\ 2 & -2 & 1 & 0 & | & 1 \\ 3 & -5 & 2 & -1 & | & 1} [/mm] (-1)*Zeile1 + Zeile2 --> Zeile2
[mm] \pmat{ 2 & 2 & 0 & 2 & | & 4\\ 0 & -4 & 1 & -2 & | & -3 \\ 3 & -5 & 2 & -1 & | & 1} (-\bruch{3}{2})*Zeile1 [/mm] + Zeile3 --> Zeile3
[mm] \pmat{ 2 & 2 & 0 & 2 & | & 4\\ 0 & -4 & 1 & -2 & | & -3 \\ 0 & -8 & 2 & -4 & | & -5} [/mm] (-2)*Zeile2 + Zeile3 --> Zeile3
[mm] \pmat{ 2 & 2 & 0 & 2 & | & 4\\ 0 & -4 & 1 & -2 & | & -3 \\ 0 & 0 & 0 & 0 & | & 1}
[/mm]
Da in der letzten Zeile 0 = 1 steht, ist das LGS nicht lösbar und man schreibt eben hin, dass die Lösungsmenge aller
L := {x = [mm] \vektor{x_{1} \\ x_{2} \\ x_{3} \\ x_{4}}| [/mm] Ax = [mm] b_{1}} [/mm] = [mm] \emptyset
[/mm]
Beim zweiten LGS Ax = [mm] b_{2} [/mm] gibt es aber durchaus Lösungen (Es werden dieselben Umformungen wie oben angewandt):
[mm] \pmat{ 2 & 2 & 0 & 2 & | & 4\\ 2 & -2 & 1 & 0 & | & 2 \\ 3 & -5 & 2 & -1 & | & 2} [/mm] (-1)*Zeile1 + Zeile2 --> Zeile2
[mm] \pmat{ 2 & 2 & 0 & 2 & | & 4\\ 0 & -4 & 1 & -2 & | & -2 \\ 3 & -5 & 2 & -1 & | & 2} (-\bruch{3}{2})*Zeile1 [/mm] + Zeile3 --> Zeile3
[mm] \pmat{ 2 & 2 & 0 & 2 & | & 4\\ 0 & -4 & 1 & -2 & | & -2 \\ 0 & -8 & 2 & -4 & | & -4} [/mm] (-2)*Zeile2 + Zeile3 --> Zeile3
[mm] \pmat{ 2 & 2 & 0 & 2 & | & 4\\ 0 & -4 & 1 & -2 & | & -2 \\ 0 & 0 & 0 & 0 & | & 0}
[/mm]
Hier steht 0 = 0 in der letzten Zeile, das heißt das LGS ist lösbar.
Nun wählen wir zwei Parameter, die man immer frei wählen kann (Wir haben 2 Gleichungen mit vier Unbekannten, d.h. es gibt keine eindeutige Lösung, sondern unendlich viele) und sagen:
Wenn x = [mm] \vektor{x_{1} \\ x_{2} \\ x_{3} \\ x_{4}} [/mm] der Lösungsvektor, dann soll nun
[mm] x_{3} [/mm] = t sein (t [mm] \in \IR) [/mm] und
[mm] x_{4} [/mm] = u sein (u [mm] \in \IR).
[/mm]
Nun kann man alle Lösungen bestimmen:
[mm] (x_{3} [/mm] und [mm] x_{4} [/mm] sind schon bestimmt, mit den restlichen beiden Gleichungen der Matrix müssen wir [mm] x_{2} [/mm] und [mm] x_{1} [/mm] in Abhängigkeit von [mm] x_{3} [/mm] = t und [mm] x_{4} [/mm] = u bestimmen)
Gleichung der Zeile2 der umgeformten Matrix:
[mm] -4x_{2} [/mm] + [mm] x_{3} -2x_{4} [/mm] = -2, also ist
[mm] \gdw -4x_{2} [/mm] = -2 + [mm] 2x_{4} [/mm] - [mm] x_{3}
[/mm]
[mm] \gdw x_{2} [/mm] = [mm] \bruch{1}{2} [/mm] - [mm] \bruch{1}{2}x_{4} [/mm] + [mm] \bruch{1}{4}x_{3}
[/mm]
[mm] \gdw x_{2} [/mm] = [mm] \bruch{1}{2} [/mm] - [mm] \bruch{1}{2}u [/mm] + [mm] \bruch{1}{4}t
[/mm]
Gleichung der Zeile1 der umgeformten Matrix:
[mm] 2x_{1} [/mm] + [mm] 2x_{2} [/mm] + [mm] 2x_{4} [/mm] = 4
[mm] \gdw x_{1} [/mm] + [mm] x_{2} [/mm] + [mm] x_{4} [/mm] = 2
[mm] \gdw x_{1} [/mm] = 2 - [mm] x_{2} [/mm] - [mm] x_{4}
[/mm]
[mm] \gdw x_{1} [/mm] = 2 - [mm] (\bruch{1}{2} [/mm] - [mm] \bruch{1}{2}u [/mm] + [mm] \bruch{1}{4}t) [/mm] - u
[mm] \gdw x_{1} [/mm] = [mm] \bruch{3}{2} [/mm] - [mm] \bruch{1}{2}u [/mm] - [mm] \bruch{1}{4}t
[/mm]
D.h. ein Lösungsvektor von [mm] Ax=b_{2} [/mm] muss die Form
x = [mm] \vektor{x_{1} \\ x_{2} \\ x_{3} \\ x_{4}} [/mm] = [mm] \vektor{\bruch{3}{2} - \bruch{1}{2}u - \bruch{1}{4}t \\ \bruch{1}{2} - \bruch{1}{2}u + \bruch{1}{4}t \\ t \\ u}
[/mm]
haben, wobei man stets t und u beliebig aus [mm] \IR [/mm] wählen kann.
|
|
|
|