matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Matrizenlineare unabhängigkeit von vek
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra - Matrizen" - lineare unabhängigkeit von vek
lineare unabhängigkeit von vek < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare unabhängigkeit von vek: is das richtig so
Status: (Frage) beantwortet Status 
Datum: 17:13 Fr 22.01.2010
Autor: gfb53

Aufgabe
Untersuchen Sie bzgl. linearer Unabhängigkeit:

(1,1,0),(0,1,1),(1,0,1) in [mm] K^3 [/mm]

ist das richtig wenn ich sage:

-1(1,1,0) + 1(0,1,1) + 1(1,0,1)

= -1+0+1 = 0
= -1+1+0 = 0
= 0+1+1 = 2

reicht das ist das so überhaubt richtig???
wenn alle 3 gleichungen =0 wären, wären die ja linar abhängig oder??
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lineare unabhängigkeit von vek: Antwort
Status: (Antwort) fertig Status 
Datum: 17:21 Fr 22.01.2010
Autor: schachuzipus

Hallo gfb53,

> Untersuchen Sie bzgl. linearer Unabhängigkeit:
>  
> (1,1,0),(0,1,1),(1,0,1) in [mm]K^3[/mm]
>  ist das richtig wenn ich sage:
>  
> -1(1,1,0) + 1(0,1,1) + 1(1,0,1)
>  
> = -1+0+1 = 0
>  = -1+1+0 = 0
>  = 0+1+1 = 2

Das stimmt zwar, sagt dir aber doch über die lineare (Un-)Abhängigkeit der drei gegebenen Vektoren herzlich wenig.

Du musst eine Linearkombination der drei Vektoren, die den Nullvektor [mm] $\vektor{0\\0\\0}$ [/mm] ergibt, ansetzen.

Deine LK ergibt den Vektor [mm] $\vektor{0\\0\\2}$ [/mm] ...

Also setzte so an:

[mm] $a\cdot{}\vektor{1\\1\\0}+b\cdot{}\vektor{0\\1\\1}+c\cdot{}\vektor{1\\0\\1}=\vektor{0\\0\\0}$ [/mm]

Das gibt dir folgendes zu lösende Gleichungssystem:

(1) $a+c=0$

(2) $a+b=0$

(3) $b+c=0$

Wenn das nur die triviale Lösung $a=b=c=0$ hat, so sind die 3 gegebenen Vektoren linear unabhängig, falls mindestens einer der Koeffizienten [mm] $a,b,c\neq [/mm] 0$ ist, so sind sie linear abhängig ...

>  
> reicht das ist das so überhaubt richtig???

Nein

>  wenn alle 3 gleichungen =0 wären, wären die ja linar
> abhängig oder??

Ja, dann hättest du ja passende Koeffizienten, die nicht alle =0 sind, gefunden ..

Passt aber hier nicht ...

Mache es gerade zu Beginn systematisch mit dem Lösen des o.a. LGS

>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]