matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Gleichungssystemelineare Gleichungssystem
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Gleichungssysteme" - lineare Gleichungssystem
lineare Gleichungssystem < Gleichungssysteme < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Gleichungssystem: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:51 So 18.01.2009
Autor: juel

Aufgabe
Für welche a ist das lineare Gleichunsgsystem

[mm] \pmat{ 1 & a & 1 \\ a & 1 & a \\ a & a & 1 } \* \vektor{x \\ y \\ z} [/mm] = [mm] \vektor{1 \\ a \\ 1} [/mm]

eindeutig lösbar? Berechnen Sie im Falle der eindeutigen Lösbarkeit die Lösung mit der Cramer'schen Regel.

Also ich muss das zuerst in eine Form der erweiterten Matrix bringen
( A | b )

[mm] \pmat{ 1 & a & 1 | 1 \\ a & 1 & a | a \\ a & a & 1 | 1 } [/mm]

dann  in eine Einheitsmatrix umformen, in die Form  ( E | b' ) und dann die Lösbarkeit bestimmen.

ich weiß nur nicht ob ich so richtig vorgehe. Denn die Einheitsmatrix bekomme ich irgendwie nicht raus.


Kann mir vielleicht jemand sagen wie ich hier vorgehen soll?

Danke im Voraus.


        
Bezug
lineare Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:06 So 18.01.2009
Autor: angela.h.b.


> Für welche a ist das lineare Gleichunsgsystem
>
> [mm]\pmat{ 1 & a & 1 \\ a & 1 & a \\ a & a & 1 } \* \vektor{x \\ y \\ z}[/mm]
> = [mm]\vektor{1 \\ a \\ 1}[/mm]
>  
> eindeutig lösbar? Berechnen Sie im Falle der eindeutigen
> Lösbarkeit die Lösung mit der Cramer'schen Regel.
>  Also ich muss das zuerst in eine Form der erweiterten
> Matrix bringen
>  ( A | b )
>  
> [mm]\pmat{ 1 & a & 1 | 1 \\ a & 1 & a | a \\ a & a & 1 | 1 }[/mm]
>  
> dann  in eine Einheitsmatrix umformen,

Hallo,

"Einheitsmatrix" klappt nicht immer, sondern nur, wenn das System eindeutig lösbar ist.

Sei also bescheiden und peile zunächst die Zeilenstufenform an.

Gruß v. Angela







in die Form  ( E |

> b' ) und dann die Lösbarkeit bestimmen.
>  
> ich weiß nur nicht ob ich so richtig vorgehe. Denn die
> Einheitsmatrix bekomme ich irgendwie nicht raus.
>  
>
> Kann mir vielleicht jemand sagen wie ich hier vorgehen
> soll?
>  
> Danke im Voraus.
>  


Bezug
                
Bezug
lineare Gleichungssystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:53 So 18.01.2009
Autor: juel

hab das versucht so zu lösen

$ [mm] \pmat{ 1 & a & 1 | 1 \\ a & 1 & a | a \\ a & a & 1 | 1 } [/mm] $


Zeile (2) minus Zeile [mm] a\*(1) [/mm]  und Zeile (3) minus Zeile (2)

ergibt


$ [mm] \pmat{ 1 & a & 1 | 1 \\ 0 & 1- a² & 0 | 0 \\ 0 & a-1 & 1-a | 1-a } [/mm] $


und hier komme ich nicht mehr weiter


Bezug
                        
Bezug
lineare Gleichungssystem: Antwort
Status: (Antwort) fertig Status 
Datum: 22:42 So 18.01.2009
Autor: MathePower

Hallo juel,

> hab das versucht so zu lösen
>  
> [mm]\pmat{ 1 & a & 1 | 1 \\ a & 1 & a | a \\ a & a & 1 | 1 }[/mm]
>  
>
> Zeile (2) minus Zeile [mm]a\*(1)[/mm]  und Zeile (3) minus Zeile
> (2)


Das darfst Du aber nur, wenn [mm]a\not=0[/mm]

Der Fall a=0 ist gesondert zu betrachten.


>  
> ergibt
>  
>
> [mm]\pmat{ 1 & a & 1 | 1 \\ 0 & 1- a² & 0 | 0 \\ 0 & a-1 & 1-a | 1-a }[/mm]
>  
>
> und hier komme ich nicht mehr weiter
>  


Jetzt kannst Du die Lösbarkeit untersuchen.

Fange da mit der 2. Zeile an.

Hier sind die Fälle a=-1, a=1 und [mm]a^{2}\not=1[/mm] zu untersuchen.


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]