matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebralineare Funktionale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Lineare Algebra" - lineare Funktionale
lineare Funktionale < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Funktionale: Beweisidee
Status: (Frage) beantwortet Status 
Datum: 19:35 So 14.05.2006
Autor: lisa80

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo zusammen!

Ich bin jetzt schon öfter auf folgenden Satz gestoßen und weiß nicht, wie man das beweisen soll..

X sei ein linearer Raum und [mm] g,f_1,...f_n [/mm] seien lineare Funktional auf X mit [mm] \cap \ker f_i \subseteq \ker [/mm] g. Dann gilt: [mm] g=\sum \alpha_i f_i [/mm] mit [mm] \alpha_i\in\mathbb{K}. [/mm]

Kann mir da vielleicht jemand helfen?

Vielen lieben Dank,
Lisa

        
Bezug
lineare Funktionale: Tipp
Status: (Antwort) fertig Status 
Datum: 20:51 So 14.05.2006
Autor: topotyp

Ich kenne den Satz zwar auch nicht, aber mir fällt was ein...
Vermutlich muss n=dim(X) sein!!! Schau mal ob du ihn
für n=1 zeigen kannst. Das sollte elementar sein, weil
ein lineares Funktional entweder surjectiv oder null ist
und weil als Unterräume eines 1-dim. Raumes nur er
selbst und der triviale Raum auftreten. Ja und der schwierige
Teil kann vielleicht mit Induktion $n-> n+1$ gemacht werden,
vielleicht wieder surjektivität von [mm] $g,f_1,...$ [/mm] benutzen falls sie [mm] $\neq [/mm] 0$
sind und vielleicht kern/rang - formeln bzw. vektorraum aufsplitten...
vielleicht geht das ja irgendwie so... gruss topotyp

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]