matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenlineare Differnetialgleichunge
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - lineare Differnetialgleichunge
lineare Differnetialgleichunge < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Differnetialgleichunge: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:41 Mi 13.09.2006
Autor: mathestudentin

Aufgabe
[mm] \vektor{y'_{1}\\y'_{2}} [/mm] = [mm] \vektor{-y_{2}\\y_{1}+x} [/mm] = [mm] \pmat{0&-1\\1&0} \vektor{y_{1}\\y_{2}}+\vektor{0\\x} [/mm]

homogenes System:

[mm] y'_{1}=-y_{2} [/mm]
[mm] y'_{2}=y_{1} [/mm]

[mm] $y_{1}=\cos [/mm] x$, [mm] $y'_{1}=-\sin [/mm] x$, [mm] $y_{2}=\sin [/mm] x$, [mm] $y'_{2}=\cos [/mm] x$

[mm] \Rightarrow \vektor{\cos x\\ \sin x} [/mm] ist eine Lösung, ebenso [mm] \vektor{\sin x\\-\cos x} [/mm]

Hallo zusammen,
ich komm mit den linearen Differentialgleichungen irgendwie überhaupt nicht zurecht.wir haben in der vorlesung das obige beispiel bekommen,allerdings verstehe ich nicht,wie der prof auf die lösung mi sin und cos gekommen ist.wahrscheinlich ist das garnicht so schwer,aber vielleicht könnte mir ja einer von euch helfen.das wär echt super.danke schonmal im voraus

        
Bezug
lineare Differnetialgleichunge: Antwort
Status: (Antwort) fertig Status 
Datum: 12:15 Mi 13.09.2006
Autor: DirkG

Oje, das sollte der Professor aber schon erklären. Vermutlich habt ihr schon ein paar solcher Aufgaben betrachtet, deshalb hat er sich hier kurzgefasst.

Maßgeblich für die Lösung sind die Eigenwerte [mm]i[/mm] und [mm]-i[/mm] der Koeffizientenmatrix [mm] $\pmat{0&-1\\1&0}$, [/mm] also die komplexen Lösungen der Eigenwertgleichung [mm]\lambda^2+1=0[/mm].

Als Lösung [mm] $y_1$ [/mm] des homogenen Systems kommen dann nur Linearkombinationen von [mm]e^{ix}[/mm] und [mm]e^{-ix}[/mm] in Frage, bzw. mit [mm]e^{\pm ix} = \cos(x)\pm i\cdot \sin(x)[/mm] ins Reelle übertragen: Linearkombinationen von [mm]\cos(x)[/mm] und [mm]\sin(x)[/mm].

In [mm]y_2=-y_1'[/mm] eingesetzt hast du dann auch das zugehörige [mm]y_2[/mm].



Das in aller Kürze zur Erinnerung - weil ich einfach nicht glaube, dass ihr das noch nie gehört habt!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]