matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenlineare DGL 1.Ordnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - lineare DGL 1.Ordnung
lineare DGL 1.Ordnung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare DGL 1.Ordnung: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:08 Mo 14.09.2009
Autor: uecki

Aufgabe
Gesucht ist eine Variablensubstitution, so dass im Ergebnis eine lineare DGL ensteht, die dann auch zu lösen ist:

[mm] (x^2-1)*y'*sin(y) [/mm] + 2*x*cos(y) = 2*x - [mm] 2*x^3 [/mm]

Hallo,

also, an der obigen Aufgabe sieht man ja, dass man die Gleichung nach y' auflösen muss und sie dann mit homogener und partikulärer Lösung lösen.
Zuerst muss allerdings eine Variablensubstition passieren, da die gegebene DGL nicht linear in y ist. Deswegen habe ich diesen Ansatz gewählt:
[mm] (x^2-1)*y'*sin(y) [/mm] + 2*x*cos(y) = 2*x - [mm] 2*x^3 [/mm]  /*(-1)
[mm] -(x^2-1)*y'*sin(y) [/mm] - 2*x*cos(y) = -2*x + [mm] 2*x^3 [/mm]
Subtitution:
z = -cos(y)
dz= sin(y) dy

[mm] \Rightarrow (1-x^2)*\bruch{dz}{dx} [/mm] + 2*x*z = -2*x + [mm] 2*x^3 [/mm]

[mm] \Rightarrow [/mm] z' = [mm] \bruch{2x}{1-x^2}*z [/mm] - [mm] \bruch{2x}{1-x^2} [/mm] + [mm] \bruch{2x^3}{1-x^2} [/mm]

Da ich keine Lösung habe, möchte ich lediglich wissen, ob das so richtig ist??!
Oder muss ich auch noch in x eine Substitution machen? Doch nur um nachher die Integration für die Lösung zu vereinfachen, aber für die reine lineare DGL ist es doch so schon fertig, oder?

Danke schon mal, LG :-)

        
Bezug
lineare DGL 1.Ordnung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 Mo 14.09.2009
Autor: MathePower

Hallo uecki,



> Gesucht ist eine Variablensubstitution, so dass im Ergebnis
> eine lineare DGL ensteht, die dann auch zu lösen ist:
>  
> [mm](x^2-1)*y'*sin(y)[/mm] + 2*x*cos(y) = 2*x - [mm]2*x^3[/mm]
>  
> Hallo,
>  
> also, an der obigen Aufgabe sieht man ja, dass man die
> Gleichung nach y' auflösen muss und sie dann mit homogener
> und partikulärer Lösung lösen.
>  Zuerst muss allerdings eine Variablensubstition passieren,
> da die gegebene DGL nicht linear in y ist. Deswegen habe
> ich diesen Ansatz gewählt:
>  [mm](x^2-1)*y'*sin(y)[/mm] + 2*x*cos(y) = 2*x - [mm]2*x^3[/mm]  /*(-1)
>  [mm]-(x^2-1)*y'*sin(y)[/mm] - 2*x*cos(y) = -2*x + [mm]2*x^3[/mm]
>  Subtitution:
>  z = -cos(y)
>  dz= sin(y) dy
>  
> [mm]\Rightarrow (1-x^2)*\bruch{dz}{dx}[/mm] + 2*x*z = -2*x + [mm]2*x^3[/mm]
>  
> [mm]\Rightarrow[/mm] z' = [mm]\bruch{2x}{1-x^2}*z[/mm] - [mm]\bruch{2x}{1-x^2}[/mm] +
> [mm]\bruch{2x^3}{1-x^2}[/mm]


Hier hat sich ein Vorzeichenfehler eingeschlichen:

[mm]\Rightarrow z' = \red{-}\bruch{2x}{1-x^2}*z - \bruch{2x}{1-x^2} + \bruch{2x^3}{1-x^2}[/mm]


>  
> Da ich keine Lösung habe, möchte ich lediglich wissen, ob
> das so richtig ist??!
>  Oder muss ich auch noch in x eine Substitution machen?
> Doch nur um nachher die Integration für die L+ösung zu
> vereinfachen, aber für die reine lineare DGL ist es doch
> so schon fertig, oder?


Ja.

Nun, mußt Du die DGL noch lösen.


>  
> Danke schon mal, LG :-)


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]