matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und Reihenlineare Annäherung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Folgen und Reihen" - lineare Annäherung
lineare Annäherung < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Annäherung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:57 Mo 28.09.2009
Autor: toteitote

Aufgabe
Find the linear approximations to the following functions about x=0
a) [mm] f(x)=(1+x)^{-1} [/mm]

Hallo, allerseits. Ich habe echt nicht den blassesten Schimmer, wie ich an die Aufgabe rangehen soll. Ich habe von der Sorte noch ein paar zu lösen. Kann mir jemand an diesem Beispiel zeigen, wie man das rechnet?
Vielen Dank, Tiemo

        
Bezug
lineare Annäherung: Reihenentwicklung
Status: (Antwort) fertig Status 
Datum: 22:00 Mo 28.09.2009
Autor: Loddar

Hallo Tiemo!


Stelle die []Taylor-Reihe um den Entwicklungspunkt [mm] $x_0 [/mm] \ = \ 0$ bis zur Potenz [mm] $x^1$ [/mm] auf.


Gruß
Loddar


Bezug
                
Bezug
lineare Annäherung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:50 Mo 28.09.2009
Autor: toteitote

Hallo, Lothar, ich habe noch nie etwas gehört von Taylor-reihen und bin mir auch sicher, das wir es nicht so rechnen sollten. Gibt es noch eine andere möglichkeit? Und wäre es möglich das an dem Beispiel zu machen? gruß, tiemo

Bezug
                        
Bezug
lineare Annäherung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:04 Di 29.09.2009
Autor: schachuzipus

Hallo toteitote,

> Hallo, Lothar, ich habe noch nie etwas gehört von
> Taylor-reihen und bin mir auch sicher, das wir es nicht so
> rechnen sollten. Gibt es noch eine andere möglichkeit? Und
> wäre es möglich das an dem Beispiel zu machen? gruß,
> tiemo

Nun, das Taylorpolynom der Ordnung 1 von [mm] $f(x)=\frac{1}{1+x}$ [/mm] in [mm] $x_0=0$ [/mm] entspricht genau der Tangente(ngleichung) von $f$ in [mm] $x_0=0$ [/mm]

Bestimme also die Gleichung der Tangente an den Graphen von $f$ an der Stelle [mm] $x_0=0$ [/mm]


Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]