matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenlineare Abb. und Dimension
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - lineare Abb. und Dimension
lineare Abb. und Dimension < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lineare Abb. und Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:22 Mo 28.12.2009
Autor: simplify

Aufgabe
Welche Abbildungen sind linear?
[mm] f_{1} [/mm] := [mm] \IR^{n} \mapsto \IR, [/mm] (x1,...,xn) [mm] \mapsto [/mm] x1 + ... + xn
[mm] f_{2} [/mm] := [mm] \IR^{2} \mapsto \IR, [/mm] (x,y) [mm] \mapsto [/mm] xy
[mm] f_{3} [/mm] := [mm] \IR^{2} \mapsto \IR^{3}, [/mm] (x,y) [mm] \mapsto [/mm] (x+1,2y,x+y)
Gegebenfalls die Dimension des Bildraums und des Kerns und eine Basis des Kerns angeben.

Hallo,
ich würde sagen,dass [mm] f_{2} [/mm] linear ist ,aber ich habe allgemein ein kleines Verständnisproblem. Kann mir jemand helfen?

        
Bezug
lineare Abb. und Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 Mo 28.12.2009
Autor: schachuzipus

Hallo simplify,

> Welche Abbildungen sind linear?
>  [mm]f_{1}[/mm] := [mm]\IR^{n} \mapsto \IR,[/mm] (x1,...,xn) [mm]\mapsto[/mm] x1 + ...
> + xn
>  [mm]f_{2}[/mm] := [mm]\IR^{2} \mapsto \IR,[/mm] (x,y) [mm]\mapsto[/mm] xy
>  [mm]f_{3}[/mm] := [mm]\IR^{2} \mapsto \IR^{3},[/mm] (x,y) [mm]\mapsto[/mm]
> (x+1,2y,x+y)
>  Gegebenfalls die Dimension des Bildraums und des Kerns und
> eine Basis des Kerns angeben.
>  Hallo,
>  ich würde sagen,dass [mm]f_{2}[/mm] linear ist

[notok]

Da hast du genau daneben gegriffen.

Es ist zB. [mm] $2\cdot{}f_2((x,y))=2xy\neq 4xy=2x\cdot{}2y=f_2((2x,2y))=f_2(2\cdot{}(x,y))$ [/mm] (für [mm] $x\cdot{}y\neq [/mm] 0$)

> ,aber ich habe
> allgemein ein kleines Verständnisproblem. Kann mir jemand
> helfen?


Worin liegt das Verständnisproblem?

Wie habt ihr "lineare Abbildung" definiert?

Da gibt's doch 2 Bedingungen nachzuprüfen (bzw. eine, wenn man's zusammenfasst).

Krame also die Definition heraus und rechne es nach oder finde, wie ich bei [mm] $f_2$ [/mm] ein Gegenbsp.

Gruß

schachuzipus

Bezug
                
Bezug
lineare Abb. und Dimension: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:06 Di 29.12.2009
Autor: simplify

Danke für die Reaktion.
Ich hab mal bei den anderen beiden f's nachgerechnet und stelle fest,dass [mm] f_{1} [/mm] linear ist und [mm] f_{3} [/mm] nicht.Kann mir da jemand zustimmen?
Ich denke auch,dass sich mein Verständnisproblem aufgelöst hat.

Bezug
                        
Bezug
lineare Abb. und Dimension: Antwort
Status: (Antwort) fertig Status 
Datum: 12:30 Di 29.12.2009
Autor: schachuzipus

Hallo simplify,

> Danke für die Reaktion.
>  Ich hab mal bei den anderen beiden f's nachgerechnet und
> stelle fest,dass [mm]f_{1}[/mm] linear ist und [mm]f_{3}[/mm] nicht. [ok]

> Kann mir da jemand zustimmen?

Ja, ich! ;-)

Wie lautet dein Argument, dass [mm] $f_3$ [/mm] nicht linear ist?



>  Ich denke auch,dass sich mein Verständnisproblem
> aufgelöst hat.


Gruß

schachuzipus

Bezug
                                
Bezug
lineare Abb. und Dimension: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:48 Di 29.12.2009
Autor: simplify

ich habe die eigenschaften überprüft und kam auf einen widerspruch:

[mm] \lambda f(x,y)=\lambda(x+1,2y,x+y)=(\lambda(x+1),\lambda(2y),\lambda(x+y))=(\lambda x+\lambda,\lambda2y,\lambda x+\lambda y)\not=(\lambda x+1,2(\lambda y),\lambda x+\lambda y))=f(\lambda x,\lambda [/mm] y)

Bezug
                                        
Bezug
lineare Abb. und Dimension: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:58 Di 29.12.2009
Autor: schachuzipus

Hallo nochmal,

ja, sehr gut, alternativ geht auch die Additivität leicht kaputt!

Bis dann

schachuzipus

Bezug
                                                
Bezug
lineare Abb. und Dimension: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:06 Di 29.12.2009
Autor: simplify

stimmt.
vielen dank für die hilfe.
lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]