matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare Algebralinearabhängige Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - linearabhängige Vektoren
linearabhängige Vektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linearabhängige Vektoren: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:05 Sa 12.11.2005
Autor: Sinus

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

wieder ich :(

Bei dieser Aufgabe habe ich allerdings überhaupt keinen Schimmer, wie ich ansetzen könnte:

a) Gegeben seien n+1 (n [mm] \in \IN) [/mm] linear abhängige differenzierbare Funktionen [mm] f_{0}, f_{1},..., f_{n} \in [/mm] Abb ( [mm] \IR, \IR). [/mm]

Zeige: Für alle x [mm] \in \IR [/mm] ist das (n+1)-Tupel

[mm] (f_{0}(x), f'_{0}(x),...,f_{0}^n(x)),...,(f_{n}(x),f'_{n}(x),...,f_{n}^n(x)) [/mm]

von Vektoren des [mm] \IR^{n+1} [/mm] linear abhängig.

b) Wir definieren [mm] f_{0}, f_{1},...,f_{n} [/mm] aus Abb [mm] (\IR, \IR) [/mm] durch [mm] f_{0}(x): [/mm] = 1und [mm] f_{i} [/mm] (x): = [mm] x^i [/mm] für i [mm] \in [/mm] {1,...,n}. Zeige, dass [mm] (f_{0},f_{1},...f_{n}) [/mm] linear unabhängig ist.

Danke im Voraus,

Sinus

        
Bezug
linearabhängige Vektoren: zu b)
Status: (Antwort) fertig Status 
Datum: 08:54 So 13.11.2005
Autor: Britta82

Guten Morgen


> b) Wir definieren [mm]f_{0}, f_{1},...,f_{n}[/mm] aus Abb [mm](\IR, \IR)[/mm]
> durch [mm]f_{0}(x):[/mm] = 1und [mm]f_{i}[/mm] (x): = [mm]x^i[/mm] für i [mm]\in[/mm]
> {1,...,n}. Zeige, dass [mm](f_{0},f_{1},...f_{n})[/mm] linear
> unabhängig ist.

Also, du siehst ja selbst, daß das alles Polynome sind, nämlich, 1, x, [mm] x^{2}, ....,x^{n}, [/mm] Die sind ja so schon mal offensichtlich unabhängig, schon durch die Definition des Polynomrings, aber du kannst auch einfach die Linearkombination aufstellen und gleich null setzten:

[mm] \lambda_{0}+\lambda_{1}x+\lambda_{2}x^{2}+...+\lambda_{n}x^{n}=0 [/mm]
offensichtlich muß [mm] \lambda_{0}=0 [/mm] sein, also bleiben n Vektoren [mm] \lambda_{1}x+\lambda_{2}x^{2}+...+\lambda_{n}x^{n}=0, [/mm] wenn du jetzt mal durch n teilst, bekommst du [mm] \lambda_{1}+...=0, [/mm] also muß [mm] \lambda_{1}=0 [/mm] sein und wieder durch x usw.

LG

Britta

Bezug
        
Bezug
linearabhängige Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 09:17 So 13.11.2005
Autor: Stefan

Hallo Sinus!

Es gibt also nach Voraussetzung reelle Zahlen [mm] $\lambda_0,\lambda_1,\ldots,\lambda_n$, [/mm] die nicht alle gleich $0$ sind, mit

[mm] $\lambda_0 f_0(x) [/mm] + [mm] \lambda_1 f_1(x) [/mm] + [mm] \ldots [/mm] + [mm] \lambda_n f_n(x) [/mm] = 0$.

Leite diese Gleichung nun $n$-mal ab und fasse die daraus entstehenden insgesamt $n+1$ Gleichungen als Vektorgleichung im [mm] $\IR^{n+1}$ [/mm] auf.

Liebe Grüße
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]