matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Abbildungenlin Abb & direkte Summe?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Abbildungen" - lin Abb & direkte Summe?
lin Abb & direkte Summe? < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lin Abb & direkte Summe?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:12 Fr 14.08.2009
Autor: pittster

Aufgabe
Ist $F: V [mm] \to [/mm] W$ ein Isomorphismus und $V= [mm] U_1 \oplus U_2$, [/mm] so ist $W= [mm] F(U_1) \oplus F(U_2)$ [/mm]

Weil F isomorph ist, ist dim(V) = dim(Im F) = dim(W) und [mm] dim(U_i) [/mm] = [mm] dim(F(U_i)) [/mm] mit i = 1,2

Aus der Dimensionsformel für direkte Summen $dim(V) = [mm] dim(U_1)+dim(U_2)-(dim(U_1\cupU_2)$ [/mm] und der isomorphie von F folgt

$dim(W) = dim (Im F) = [mm] dim(U_1) [/mm] + [mm] dim(U_2) [/mm] - [mm] dim(F(U_1\cup U_2))$ [/mm]



Reicht es als Argument, dass die beiden UVR die gleiche Dimension wie V (bzw. ihre Bilder wie W) haben?


lg, Dennis


        
Bezug
lin Abb & direkte Summe?: Antwort
Status: (Antwort) fertig Status 
Datum: 15:41 Fr 14.08.2009
Autor: felixf

Moin Dennis!

> Ist [mm]F: V \to W[/mm] ein Isomorphismus und [mm]V= U_1 \oplus U_2[/mm], so
> ist [mm]W= F(U_1) \oplus F(U_2)[/mm]
>
>  Weil F isomorph ist,

du meinst, weil $F$ ein Isomorphismus ist! $V$ und $W$ sind isomorph.

> ist
> dim(V) = dim(Im F) = dim(W) und [mm]dim(U_i)[/mm] = [mm]dim(F(U_i))[/mm] mit
> i = 1,2

Ja.

> Aus der Dimensionsformel für direkte Summen [mm]dim(V) = dim(U_1)+dim(U_2)-(dim(U_1\cupU_2)[/mm]
> und der isomorphie von F folgt
>  
> [mm]dim(W) = dim (Im F) = dim(U_1) + dim(U_2) - dim(F(U_1\cup U_2))[/mm]

Du meinst [mm] $\cap$ [/mm] und nicht [mm] $\cup$. [/mm]

> Reicht es als Argument, dass die beiden UVR die gleiche
> Dimension wie V (bzw. ihre Bilder wie W) haben?

Was genau meinst du damit?

Du brauchts uebrigens nix mit Dimensionen zu machen. Du musst doch nur zeigen:
a) [mm] $F(U_1) \cap F(U_2) [/mm] = [mm] \{ 0 \}$ [/mm] und
b) [mm] $F(U_1) [/mm] + [mm] F(U_2) [/mm] = W$.

Das kannst du doch direkt nachrechnen, da ja
c) [mm] $U_1 \cap U_2 [/mm] = [mm] \{ 0 \}$ [/mm] und
d) [mm] $U_1 [/mm] + [mm] U_2 [/mm] = V$ gilt.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]