matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche Differentialgleichungenlin. DGL 1. Ordung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Gewöhnliche Differentialgleichungen" - lin. DGL 1. Ordung
lin. DGL 1. Ordung < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

lin. DGL 1. Ordung: Kleines Integrationsproblem
Status: (Frage) beantwortet Status 
Datum: 17:14 Sa 03.05.2008
Autor: rennreh

Aufgabe
Integrieren sie die DGL [mm] y`=\wurzel{y} [/mm]

Da diese Gleichung eine Inhomogene lin. Differentialgleichung ist bin ich zu folgendem Ansatz gekommen:

[mm] \bruch{dy}{dx}=\wurzel{y} [/mm]

durch umstellen erhalte ich:

[mm] \integral_{}^{}{\bruch{dy}{\wurzel{y}}} [/mm] = [mm] \integral_{}^{}{dx} [/mm]


soweit sogut.
in der übung hat unser dozent folgendes ergebnis angeschreiben:

durch lösung des integrals entsteht:

[mm] 2*\wurzel{y} [/mm] = x + c

und folglich nach y umgestellt:

y = [mm] \bruch{(x+c)^2}{4} [/mm]

Was ich an der Sache nciht verstehe ist, die Integration von dem Ausdruck:

[mm] \integral_{}^{}{\bruch{dy}{\wurzel{y}}} [/mm]

ich würde erstmal substituieren:

[mm] u=\wurzel{y} [/mm]

[mm] \integral_{}^{}{\bruch{dy}{u}} [/mm]

[mm] \bruch{du}{dy} [/mm] = [mm] \bruch{1}{2*\wurzel{y}} [/mm]

dy = [mm] 2*\wurzel{y}*du [/mm]

durch rücksubstitution:

[mm] \integral_{}^{}{\bruch{2*\wurzel{y}*du}{u} } [/mm]

was letzten endes folgendes ergibt:

[mm] \bruch{2*\wurzel{y}}{ln(\wurzel{y})} [/mm]


Welches ist nun richtig, meine version oder die von unserem dozenten ?
wenn ja würde ich gern wissen was er dort gemacht hat.

mfg




Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
lin. DGL 1. Ordung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Sa 03.05.2008
Autor: steppenhahn


> [mm]\integral_{}^{}{\bruch{dy}{\wurzel{y}}}[/mm]
>  
> ich würde erstmal substituieren:

>

> [mm]u=\wurzel{y}[/mm]

Man kann es sich auch schwerer machen, als es ist.

[mm] \bruch{1}{\wurzel{y}} [/mm] = [mm] \bruch{1}{y^{\bruch{1}{2}}} [/mm] = [mm] y^{-\bruch{1}{2}}. [/mm]

Dann kannst du das Integral ganz einfach mit Potenzregel lösen :-)

>  
> [mm]\integral_{}^{}{\bruch{dy}{u}}[/mm]
>  
> [mm]\bruch{du}{dy}[/mm] = [mm]\bruch{1}{2*\wurzel{y}}[/mm]
>  
> dy = [mm]2*\wurzel{y}*du[/mm]
>  
> durch EINSETZEN:
>  
> [mm]\integral_{}^{}{\bruch{2*\wurzel{y}*du}{u} }[/mm]

Bis hierher stimmt's noch. Aber zieh' doch mal deine Substitution durch!
Denn es ist doch [mm] \wurzel{y} [/mm] = u und folglich

[mm]\integral_{}^{}{\bruch{2*\wurzel{y}*du}{u} }[/mm] = [mm]\integral_{}^{}{\bruch{2*u*du}{u} }[/mm] = [mm]\integral_{}^{}{2 du }[/mm]

Das kannst du sehr leicht lösen und die (darauf folgende!) Rücksubstitution bringt dich genau zum gleichen Ergebnis wie die Variante oben.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]